Intraretinal layer segmentation and parameter measurement in optic nerve head region through energy function of spatial-gradient continuity constraint

Zai-liang Chen , Hao Wei , Hai-lan Shen , Peng Peng , Ke-juan Yue , Jian-feng Li , Bei-ji Zou

Journal of Central South University ›› 2018, Vol. 25 ›› Issue (8) : 1938 -1947.

PDF
Journal of Central South University ›› 2018, Vol. 25 ›› Issue (8) : 1938 -1947. DOI: 10.1007/s11771-018-3884-7
Article

Intraretinal layer segmentation and parameter measurement in optic nerve head region through energy function of spatial-gradient continuity constraint

Author information +
History +
PDF

Abstract

For the diagnosis of glaucoma, optical coherence tomography (OCT) is a noninvasive imaging technique for the assessment of retinal layers. To accurately segment intraretinal layers in an optic nerve head (ONH) region, we proposed an automatic method for the segmentation of three intraretinal layers in eye OCT scans centered on ONH. The internal limiting membrane, inner segment and outer segment, Bruch’s membrane surfaces under vascular shadows, and interaction of multiple high-reflectivity regions in the OCT image can be accurately segmented through this method. Then, we constructed a novel spatial-gradient continuity constraint, termed spatial-gradient continuity constraint, for the correction of discontinuity between adjacent image segmentation results. In our experiment, we randomly selected 20 B-scans, each annotated three retinal layers by experts. Signed distance errors of −0.80 μm obtained through this method are lower than those obtained through the state-of-art method (−1.43 μm). Meanwhile, the segmentation results can be used as bases for the diagnosis of glaucoma.

Keywords

surface segmentation / parameter measurement / optical coherence tomography / optic nerve head / spatial-gradient continuity constraints

Cite this article

Download citation ▾
Zai-liang Chen, Hao Wei, Hai-lan Shen, Peng Peng, Ke-juan Yue, Jian-feng Li, Bei-ji Zou. Intraretinal layer segmentation and parameter measurement in optic nerve head region through energy function of spatial-gradient continuity constraint. Journal of Central South University, 2018, 25(8): 1938-1947 DOI:10.1007/s11771-018-3884-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HuangD, SwansonE A, LinC P, SchumanJ S, StinsonW G, ChangW. Optical coherence tomography [J]. Science, 1991, 254(5035): 1178-1181

[2]

DrexlerW, FujimotoJ GOptical coherence tomography: Technology and applications [M], 2015, Berlin, Springer

[3]

GarasA, VarghaP, HolloG. Diagnostic accuracy of nerve fibre layer, macular thickness and optic disc measurements made with the RTVue-100 optical coherence tomograph to detect glaucoma [J]. Eye, 2011, 25(1): 57-65

[4]

MwanzaJ C, OakleyJ D, BudenzD L, AndersonD R. Ability of cirrus HD-OCT optic nerve head parameters to discriminate normal from glaucomatous eyes [J]. Ophthalmology, 2011, 118(2): 241-248

[5]

SchmittJ M, XiangS H, YungK M. Speckle in optical coherence tomography [J]. Journal of Biomedical Optics, 1999, 4(1): 95-106

[6]

CuratoloA, KennedyB F, SampsonD D, HillmanT RSpeckle in optical coherence tomography [M], 2013, London, Taylor & Francis

[7]

IshikawaH, SteinD M, WollsteinG, BeatonS, FujimotoJ G, SchumanJ S. Macular segmentation with optical coherence tomography [J]. Investigative Ophthalmology & Visual science, 2005, 46(6): 2012-2017

[8]

AhlersC, SimaderC, GeitzenauerW, StockG, StetsonP, DastmalchiS, Schmidt-ErfurthU. Automatic segmentation in three-dimensional analysis of fibrovascular pigmentepithelial detachment using highdefinition optical coherence tomography [J]. British Journal of Ophthalmology, 2008, 92(2): 197-203

[9]

LuS-j, CheungC Y, LiuJ, LimJ H, WongT Y. Automated layer segmentation of optical coherence tomography images [J]. IEEE Transactions on Biomedical Engineering, 2010, 57(10): 2605-2608

[10]

ZhuH-g, CrabbD P, SchlottmannP G, HoT, Garway-HeathD F. FloatingCanvas: Quantification of 3D retinal structures from spectral-domain optical coherence tomo-graphy [J]. Optics Express, 2010, 18(24): 24595-24610

[11]

AntonyB J, AbràmoffM D, LeeK, SonkovaP, GuptaP, KwonY, GarvinM KWeverJ B, MolthenR C. Automated 3D segmentation of intraretinal layers from optic nerve head optical coherence tomography images [C]. Medical Imaging 2010: Biomedical Applications in Molecular, Structural, and Functional Imaging, 2010, California, International Society for Optics and Photonics: 76260U

[12]

ShahA, WangJ K, GarvinM K, SonkaM, WuX-dong. Automated surface segmentation of internal limiting membrane in spectral-domain optical coherence tomography volumes with a deep cup using a 3-D range expansion approach [C]. 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), 201414051408

[13]

LeeK, NiemeijerM, GarvinM K, KwonY H, SonkaM, AbramoffM D. Segmentation of the optic disc in 3-D OCT scans of the optic nerve head [J]. IEEE Transactions on Medical Imaging, 2010, 29(1): 159-168

[14]

MiriM S, RoblesV A, AbràmoffM D, KwonY H, GarvinM K. Incorporation of gradient vector flow field in a multimodal graph-theoretic approach for segmenting the internal limiting membrane from glaucomatous optic nerve head-centered SD-OCT volumes [J]. Computerized Medical Imaging and Graphics, 2017, 55: 87-94

[15]

BezdekJ C, EhrlichR, FullW. FCM: The fuzzy c-means clustering algorithm [J]. Computers & Geosciences, 1984, 10(23): 191-203

[16]

ChanT F, VeseL A. Active contours without edges [J]. IEEE Transactions on Image Processing, 2001, 10(2): 266-277

[17]

DabovK, FoiA, KatkovnikV, EgiazarianK. Image denoising by sparse 3-D transform-domain collaborative filtering [J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095

[18]

LiuQ, ZouB-j, ChenJ, KeW, YueK-j, ChenZ-l, ZhaoG-ying. A location-tosegmentation strategy for automatic exudate segmentation in colour retinal fundus images [J]. Computerized Medical Imaging and Graphics, 2017, 55: 78-86

[19]

YaoC, ChenH-jin. Automated retinal blood vessels segmentation based on simplified PCNN and fast 2D-Otsu algorithm [J]. Journal of Central South University of Technology, 2009, 16(4): 640-646

[20]

LiS-f, WangX-z, LiS-n, WuG-w, WangN-li. Evaluation of optic nerve head and retinal nerve fiber layer in early and advance glaucoma using frequency-domain optical coherence tomography [J]. Graefe’s Archive for Clinical and Experimental Ophthalmology, 2010, 248(3): 429-434

[21]

SungK R, NaJ H, LeeY. Glaucoma diagnostic capabilities of optic nerve head parameters as determined by Cirrus HD optical coherence tomography [J]. Journal of Glaucoma, 2012, 21(7): 498-504

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/