A nonlinear rheological damage model of hard rock

Bo Hu , Sheng-qi Yang , Peng Xu

Journal of Central South University ›› 2018, Vol. 25 ›› Issue (7) : 1665 -1677.

PDF
Journal of Central South University ›› 2018, Vol. 25 ›› Issue (7) : 1665 -1677. DOI: 10.1007/s11771-018-3858-9
Article

A nonlinear rheological damage model of hard rock

Author information +
History +
PDF

Abstract

By adopting cyclic increment loading and unloading method, time-independent and time-dependent strains can be separated. It is more reasonable to describe the reversible and the irreversible deformations of sample separately during creep process. A nonlinear elastic-visco-plastic rheological model is presented to characterize the time-based deformational behavior of hard rock. Specifically, a spring element is used to describe reversible instantaneous elastic deformation. A reversible nonlinear visco-elastic (RNVE) model is developed to characterize recoverable visco-elastic response. A combined model, which contains a fractional derivative dashpot in series with another Hook’s body, and a St. Venant body in parallel with them, is proposed to describe irreversible visco-plastic deformation. Furthermore, a three-stage damage equation based on strain energy is developed in the visco-plastic portion and then nonlinear elastic-visco-plastic rheological damage model is established to explain the trimodal creep response of hard rock. Finally, the proposed model is validated by a laboratory triaxial rheological experiment. Comparing with theoretical and experimental results, this rheological damage model characterizes well the reversible and irreversible deformations of the sample, especially the tertiary creep behavior.

Keywords

Hard rock / multi-step loading and unloading cycles / nonlinear / damage / rheological model

Cite this article

Download citation ▾
Bo Hu, Sheng-qi Yang, Peng Xu. A nonlinear rheological damage model of hard rock. Journal of Central South University, 2018, 25(7): 1665-1677 DOI:10.1007/s11771-018-3858-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

YangS Q, XuP, LiY B, HuangY H. Experimental investigation on triaxial mechanical and permeability behavior of sandstone after exposure to different high temperature treatments [J]. Geothermics, 2017, 69: 93-109

[2]

YangS Q, RanjithP G, JingH W, TianW L, JuY. An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments [J]. Geothermics, 2017, 65: 180-197

[3]

YangS Q, TianW L, RanjithP G. Experimental investigation on deformation failure characteristics of crystalline marble under triaxial cyclic loading [J]. Rock Mechanics and Rock Engineering, 2017, 50: 2871-2889

[4]

YangS Q, TianW L, HuangY H. Failure mechanical behavior of pre-holed granite specimens after elevated temperature treatment by particle flow code [J]. Geothermics, 2018, 72: 124-137

[5]

BoukharovG N, ChandaM W, BoukharovN G. The three processes of brittle crystalline rock creep [J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1995, 32(4): 325-335

[6]

MaraniniE, BrignoliM. Creep behaviour of a weak rock: experimental characterization [J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(1): 127-138

[7]

MalanD F. Simulating the time-dependent behaviour of excavations in hard rock [J]. Rock Mechanics and Rock Engineering, 2002, 35(4): 225-254

[8]

MiuraK, OkuiY, HoriiH. Micromechanics-based prediction of creep failure of hard rock for long-term safety of high-level radioactive waste disposal system [J]. Mechanics and Materials, 2003, 35(3–6): 587-601

[9]

DebernardiD, BarlaG. New viscoplastic model for design analysis of tunnels in squeezing conditions [J]. Rock Mechanics and Rock Engineering, 2009, 42(2): 259-288

[10]

NomikosP, RahmannejadR, SofianosA. Supported axisymmetric tunnels within linear viscoelastic Burgers rocks [J]. Rock Mechanics and Rock Engineering, 2011, 44(5): 553-564

[11]

HeapM J, BaudP, MeredithP G, VinciguerraS, BellA F, MainI G. Brittle creep in basalt and its application to time-dependent volcano deformation [J]. Earth and Planetary Science Letters, 2011, 307(12): 71-82

[12]

MalanD F. Time-dependent behaviour of deep level tabular excavations [J]. Rock Mechanics and Rock Engineering, 1999, 32(2): 123-155

[13]

SterpiD, GiodaG. Visco-plastic behaviour around advancing tunnels in squeezing rock [J]. Rock Mechanics and Rock Engineering, 2009, 42(2): 319-339

[14]

MaraniniE, YamaguchiT. A non-associated viscoplastic model for the behaviour of granite in triaxial compression [J]. Mechanics and Materials, 2001, 33(5): 283-293

[15]

ZhaoY, WangY, WangW, WanW, TangJin. Modeling of non-linear rheological behavior of hard rock using triaxial rheological experiment [J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 93: 66-75

[16]

XuW, YangS, ChuWei. Nonlinear viscoelasto-plastic rheological model (Hohai model) of rock and its engineering application [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(3): 433-447

[17]

CaoG H, HuJ X, ZhangK. Coupling model for calculating prestress loss caused by relaxation loss, shrinkage, and creep of concrete [J]. Journal of Central South University, 2016, 23(2): 470-478

[18]

BoniniM, DebernardiD, BarlaM, BarlaG. The mechanical behaviour of clay shales and implications on the design of tunnels [J]. Rock Mechanics and Rock Engineering, 2009, 42: 361-388

[19]

YangW, ZhangQ, LiS, WangShu. Time-dependent behavior of diabase and a nonlinear creep model [J]. Rock Mechanics and Rock Engineering, 2014, 47(4): 1211-1224

[20]

SciumeG, BenboudjemaF. A viscoelastic unitary crack-opening strain tensor for crack width assessment in fractured concrete structures [J]. Mechanics of Time-Dependent Materials, 2016, 21(2): 223-243

[21]

ShaoJ F, ChauK T, FengX T. Modeling of anisotropic damage and creep deformation in brittle rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(4): 582-592

[22]

LiX Z, ShaoZ S. Investigation of macroscopic brittle creep failure caused by microcrack growth under step loading and unloading in rocks [J]. Rock Mechanics and Rock Engineering, 2016, 49: 2581-2593

[23]

WenJ F, TuS T. A multiaxial creep-damage model for creep crack growth considering cavity growth and microcrack interaction [J]. Engineering Fracture Mechanics, 2014, 123: 197-210

[24]

KachanovL M. Time of the rupture process under creep conditions [J]. Izv Akad Nauk S S R Otd Tech Nauk, 1958, 8: 26-31

[25]

MurakamiS. Notion of continuum damage mechanics and its application to anisotropic creep damage theory [J]. Journal of Engineering Materials and Technology, 1983, 105(2): 99-105

[26]

KyoYA, IchikaWA, KawamoTO. A damage mechanics theory for discontinuous rock mass [J]. Rock Mechanics, 1985469480

[27]

LiuH Z, XieH Q, HeJ D, XiaoM L. Nonlinear creep damage constitutive model for soft rocks [J]. Mechanics of Time-Dependent Materials, 2017, 21(1): 73-96

[28]

YangS, XuP, RanjithP G, ChenG, JingHong. Evaluation of creep mechanical behavior of deep-buried marble under triaxial cyclic loading [J]. Arabian Journal of Geosciences, 2015, 8(9): 6567-6582

[29]

HuB, WangZ L, LiangB, LiG, WangJ G, ChenG. Experimental study of rock creep properties [J]. Journal of Experimental Mechanics, 2015, 30(04): 438-446

[30]

BuiT A, WongH, DeleruyelleF, ZhouA. Constitutive modelling of the time-dependent behaviour of partially saturated rocks [J]. Computers and Geotechnics, 2016, 78: 123-133

[31]

RogersL. Operators and fractional derivatives for viscoelastic constitutive equations [J]. Journal of Rheological, 1983, 27(4): 351

[32]

BagleyR L, TorvikP J. Fractional calculus-A different approach to the analysis of viscoelastically damped structures [J]. AIAA Journal, 1983, 215741-748

[33]

KoellerR C. Application of fractional calculus to the theory of viscoelasticity [J]. Journal of Applied Mechanics, 1984, 51(2): 299-307

[34]

WelchS W J, RorrerR A L, DurenJ R G. Application of time-based fractional calculus methods to viscoelastic creep and stress relaxation of materials [J]. Mechanics of Time-Dependent Materials, 1999, 3(3): 279-303

[35]

CelauroC, FecarottiC P a, CollopA C. Experimental validation of a fractional model for creep/recovery testing of asphalt mixtures [J]. Construction and Building Materials, 2012, 36(4): 458-466

[36]

ZhouH W, WangC P, HanB B, DuanZ Q. A creep constitutive model for salt rock based on fractional derivatives [J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48: 116-121

[37]

ZhouH W, WangC P, Mishnaevsky, LJ, DuanZ Q, DingJ Y. A fractional derivative approach to full creep regions in salt rock [J]. Mechanics of Time-Dependent Materials, 2013, 17: 413-425

[38]

KangJ, ZhouF, LiuC, LiuYing. A fractional non-linear creep model for coal considering damage effect and experimental validation [J]. International Journal of Non-Linear Mechanics, 2015, 76: 20-28

[39]

XiaC, ZhongShi. Experimental data processing method in consideration of influence of loading history on rock specimen deformation [J]. Journal of Central South Institute of Mining and Metallurgy, 1989, 20(1): 18-24

[40]

ZhaoY, ZhangL, WangW, WanW, LiS, MaW, WangY. Creep behavior of intact and cracked limestone under multi-level loading and unloading cycles [J]. Rock Mechanics and Rock Engineering, 2017, 50(6): 1409-1424

[41]

YuT, WangX, LiuZaiElasticity and plasticity [M], 2004, Beijing, China Architecture and Building Press

[42]

SunJunRheological behavior of geomaterials and its engineering applications [M], 1999, Beijing, China Architecture and Building Press

[43]

YangS, ChengLong. Non-stationary and nonlinear visco-elastic shear creep model for shale [J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(6): 1011-1020

[44]

YinD, WuH, ChengC, ChenYang. Fractional order constitutive model of geomaterials under the condition of triaxial test [J]. International Journal for Numerical Analytical Methods in Geomechanics, 2013, 37(8): 961-972

[45]

KilbasA A, SrivastavaH M, TrujilloJ JTheory and applications of fractional differential equations [M], 2006, Amsterdam, Elsevier

[46]

XieH, PengR, JuYang. Energy dissipation of rock deformation and fracture [J]. Chinese Journal Rock Mechanics and Engineering, 2004, 23(21): 3565-3570

[47]

HeapM J, BaudP, MeredithP G. Influence of temperature on brittle creep in sandstones [J]. Geophysical Research Letters, 2009, 36(19): L19305

[48]

HeapM J, BaudP, MeredithP G, BellA F, MainI G. Time-dependent brittle creep in Darley Dale sandstone [J]. Geophysical Research Letters, 2009, 114B07203

[49]

LinQ X, LiuY M, ThamL G, TangC A, LeeP K K, WangJ. Time-dependent strength degradation of granite [J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 4671103-1114

[50]

YangS, XuP, RanjithP G. Damage model of coal under creep and triaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 80(8): 337-345

AI Summary AI Mindmap
PDF

160

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/