Radiation pattern analyses of circular aperture antenna to generate radio orbital angular momentum

Cheng-long Lin , Ming-tuan Lin , Pei-guo Liu , Xing Tang

Journal of Central South University ›› 2018, Vol. 25 ›› Issue (6) : 1513 -1523.

PDF
Journal of Central South University ›› 2018, Vol. 25 ›› Issue (6) : 1513 -1523. DOI: 10.1007/s11771-018-3844-2
Article

Radiation pattern analyses of circular aperture antenna to generate radio orbital angular momentum

Author information +
History +
PDF

Abstract

Circular aperture antenna recently has been regarded as a nature source to generate high power radio orbital angular momentum (OAM) in millimeter (mm) wave; however, the radiation pattern was not investigated. Theoretical derivation of radiation pattern of circular aperture OAM antenna is conducted to evaluate the performance. Extensive simulations verify the validity of the theoretical result. Furthermore, performance of such antenna excited by orthogonal TE and TM modes is compared, which shows the potential application for TEg1 mode to create pure OAM g–1 mode in a practical system, providing guidance for generation of twisted radio waves in mm-wave bands.

Keywords

orbital angular momentum (OAM) / twisted radio wave / millimeter-wave / circular aperture antenna / radiation pattern / TE mode / TM mode

Cite this article

Download citation ▾
Cheng-long Lin, Ming-tuan Lin, Pei-guo Liu, Xing Tang. Radiation pattern analyses of circular aperture antenna to generate radio orbital angular momentum. Journal of Central South University, 2018, 25(6): 1513-1523 DOI:10.1007/s11771-018-3844-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ThidéB, ThenH, SjöholmJ, PalmerK B J, CarozziT D, IstominY N, IbragimovN H, KhamitovaR. Utilization of photon orbital angular momentum in the low-frequency radio domain [J]. Physical Review Letters, 2007, 99(8): 087701

[2]

GaoX, HuangS, ZhouJ, WeiY, GaoC, ZhangX, GuW. Generating, multiplexing/demultiplexing and receiving the orbital angular momentum of radio frequency signals using an optical true time delay unit [J]. Journal of Optics, 2013, 15105401

[3]

XuC, ZhengS, ZhangW, ChenY, ChiH, JinX, ZhangX. Free-space radio communication employing OAM multiplexing based on rotman lens [J]. IEEE Microwave and Wireless Components Letters, 2016, 269738-740

[4]

LiuK, ChengY, LiX, WangH, QinY, GaoYSpinning target detection using OAM-based radar [C]//International Workshop on Electromagnetics: Applications and Student Innovation Competition. IEEE, 20172930

[5]

LiuK, LiX, ChengY, GaoY, FanB, JiangY. OAM-based multitarget detection: From theory to experiment [J]. IEEE Microwave and Wireless Components Letters, 2017, 99: 1-3

[6]

MariE, SpinelloF, OldoniM, RavanelliR A, RomanatoF, ParisiG. Near-field experimental verification of separation of OAM channels [J]. IEEE Antennas & Wireless Propagation Letters, 2015, 14: 556-558

[7]

BaiQ, TennantA, AllenB. Experimental circular phased array for generating OAM radio beams [J]. Electronics Letters, 2014, 50(20): 1414-1415

[8]

LinM, GaoY, LiuP, LiuJ. Theoretical analyses and design of circular array to generate orbital angular momentum [J]. IEEE Transactions on Antennas & Propagation, 2017, 65(7): 3510-3519

[9]

LinM, GaoY, LiuP, GuoZ. Performance analyses of the radio orbital angular momentum steering technique based on Ka-band antenna [J]. International Journal of Antennas and Propagation, 2017, 2017(6): 1-12

[10]

BarbutoM, TrottaF, BilottiF, ToscanoA. Circular polarized patch antenna generating orbital angular momentum [J]. Progress in Electromagnetics Research, 2014, 148: 23-30

[11]

YuS, LiL, ShiG, ZhuC, ZhouX, ShiY. Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain [J]. Applied Physics Letters, 2016, 108(12): 5448

[12]

ChenM L N, JiangL J, ShaW E I. Artificial perfect electric conductor-perfect magnetic conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly perfect conversion efficiency [J]. Journal of Applied Physics, 2016, 119: 064506

[13]

ChenM L N, JiangL J, ShaW E I. Ultrathin complementary metasurface for orbital angular momentum generation at microwave frequencies [J]. IEEE Transactions on Antennas & Propagation, 2017, 651396-400

[14]

TamburiniF, MariE, SponselliA, RomanatoF, BoT, BianchiniA, PalmieriL, SomedaC G. Encoding many channels in the same frequency through radio vorticity: First experimental test [J]. New Journal of Physics, 2011, 14(3): 811-815

[15]

YanY, XieG, LaveryM P, HuangH, AhmedN, BaoC, RenY, CaoY, LiL, ZhaoZ. High-capacity millimeter-wave communications with orbital angular momentum multiplexing[J]. Nature Communications, 2014, 54876

[16]

ZhengS, HuiX, JinX, ChiH, ZhangX. Transmission characteristics of a twisted radio wave based on circular traveling-wave antenna [J]. IEEE Transactions on Antennas & Propagation, 2015, 63(4): 1530-1536

[17]

ZhangW, ZhengS, HuiX, ChenY, JinX, ChiH, ZhangX. Four-OAM-mode antenna with traveling-wave ring-slot structure [J]. IEEE Antennas & Wireless Propagation Letters, 2017, 16194-197

[18]

HuY, ZhengS, ZhangZ, ChiH, JinX, ZhangX. Simulation of orbital angular momentum radio communication systems based on partial aperture sampling receiving scheme [J]. Iet Microwaves Antennas & Propagation, 2016, 10(10): 1043-1047

[19]

GuoG, HuW, DuX. Electromagnetic vortex based radar target imaging [J]. Journal of National University of Defense Technology, 2013, 6: 71-76

[20]

LiuK, ChengY, YangZ, WangH, QinY, LiX. Orbital-angular-momentum-based electro-magnetic vortex imaging [J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 711-714

[21]

LiuK, LiuH, QinY, ChengY, WangS, LiX, WangH. Generation of OAM beams using phased array in the microwave band [J]. IEEE Transactions on Antennas & Propagation, 2016, 64(9): 3850-3857

[22]

LinM, GaoY, LiuP, LiuJ. Super-resolution orbital angular momentum based radar targets detection [J]. Electronics Letters, 2016, 52(13): 1168-1170

[23]

LinM, GaoY, LiuP, LiuJ. Improved OAM-based radar targets detection using uniform concentric circular arrays [J]. International Journal of Antennas and Propagation, 2016, 2016(6): 1-8

[24]

ChengL, HongW, HaoZ C. Generation of electromagnetic waves with arbitrary orbital angular momentum modes [J]. Scientific Reports, 2014, 4: 4814

[25]

HuiX, ZhengS, ChenY, HuY, JinX, HaoC, ZhangX. Multiplexed millimeter wave communication with dual orbital angular momentum (OAM) mode antennas [J]. Scientific Reports, 2015, 510148

[26]

SawantA, ChoeM S, ThummM, ChoiE M. Orbital angular momentum (OAM) of rotating modes driven by electrons in electron cyclotron masers [J]. Scientific Reports, 2017, 73372

[27]

CollinRFoundations for microwave engineering [M], 1973, Berlin, VEB Verlag Technik

[28]

BerglindE, BjorkG. Humblet’s decomposition of the electromagnetic angular moment in metallic waveguides [J]. IEEE Transactions on Microwave Theory & Techniques, 2014, 62(4): 779-788

[29]

HuangY, LiH, DuP, LiuS. Third-harmonic complex cavity gyrotron self-consistent nonlinear analysis [J]. IEEE Transactions on Plasma Science, 1997, 25(6): 1406-1411

[30]

YongH, LiH, YangS, LiuS. Study of a 35-GHz third-harmonic low-voltage complex cavity gyrotron [J]. Acta Electronica Sinica, 2000, 27(2): 368-373

[31]

LiX, LangJ, AlfadhlY, ChenX. 3D PIC simulation of starting process of oscillation in a 42 GHz gyrotron [C]//Millimeter Waves and Thz Technology Workshop. IEEE, 20131-2

[32]

ThummM K A. Recent developments on high-power gyrotrons—Introduction to this special issue [J]. Journal of Infrared Millimeter & Terahertz Waves, 2011, 32(3): 241-252

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/