Petrogenesis of granite from Xiaofan Mo deposit, Dabie Orogen

Qing-quan Liu , Yong-jun Shao , Ke-ping Zhou , Yong-feng Li

Journal of Central South University ›› 2018, Vol. 25 ›› Issue (6) : 1489 -1500.

PDF
Journal of Central South University ›› 2018, Vol. 25 ›› Issue (6) : 1489 -1500. DOI: 10.1007/s11771-018-3842-4
Article

Petrogenesis of granite from Xiaofan Mo deposit, Dabie Orogen

Author information +
History +
PDF

Abstract

The Mesozoic granitoids in the Dabie Orogen are of particular geological interest as indicators for Mesozoic lithospheric evolution because of their close association with porphyry Mo mineralization. Here, we present a study using petrogeochemistry data to constrain the petrogenesis of the Xiaofan granites in the Dabie Mo mineralization belt (DMB), Henan Province, China. Field investigations show that the Xiaofan pluton mainly consists of porphyritic granite. The Xiaofan granites have high SiO2 contents of 74.29 wt%–76.07 wt% (average: 75.18 wt%), Al2O3 contents of 11.66 wt%–12.83 wt% (average: 12.13 wt%), and K2O contents of 5.37 wt%–7.90 wt% (average: 6.86 wt%) and low MgO (0.06 wt%–0.16 wt%), TiO2 (0.09 wt%–0.10 wt%), and P2O5 (0.047 wt%–0.103 wt%) contents. They are enriched in Rb, U, K and Hf but depleted in Ba, Nb, Ta, Sr and Ti. By geochemical and mineralogical features, we propose that the Xiaofan granites belong to A-type type granite and dominantly sourced from the crust. The granites from the Xiaofan Mo deposit may have formed in a post-collision extensional setting.

Keywords

granite / petrogenesis / Xiaofan Mo deposit / Dabie Orogen

Cite this article

Download citation ▾
Qing-quan Liu, Yong-jun Shao, Ke-ping Zhou, Yong-feng Li. Petrogenesis of granite from Xiaofan Mo deposit, Dabie Orogen. Journal of Central South University, 2018, 25(6): 1489-1500 DOI:10.1007/s11771-018-3842-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MartinH, SmithiesR H, RappR, MoyenJ F, ChampionD. An overview of adakite, tonalitetrondhjemiten-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution [J]. Lithos, 2005, 79(12): 1-24

[2]

MoX, HouZ, NiuY, DongG Q X-m, ZhaoZ, YangZhi. Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet [J]. Lithos, 2007, 96(12): 225-242

[3]

WangQ W D A, XuJ, JianP, ZhaoZ, LiC, XuW, MaJ, HeBin. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: Implications for partial melting and delamination of thickened lower crust [J]. Geochimica et Cosmochimica Acta, 2007, 71(10): 2609-2636

[4]

LiY, MaoJ, HuH, GuoB, BaiFeng. Geology, distribution, types and tectonic settings of Mesozoic molybdenum deposits in East Qinling area [J]. Mineral Deposits, 2005, 24(3): 292-304

[5]

LiuQ, LiuY, LiY, LuoZ, XieKe. Metallogenic conditions and genesis of porphyry type molybdenum deposit in the northern piedmont of Dabieshan Mountain [J]. Contributions to Geology and Mineral Resources Research, 2013, 28(1): 27-33

[6]

LiuQ, ZhangZ, LiY, LuoZ, XieKe. Geologic features, mineralization epoch and tectonic setting of molybdenum deposits in the northern dabie mountain [J]. Geology and Prospecting, 2014, 50(2): 199-215

[7]

LiuQ, ShaoY, ChenX-M, LiuZ, ZhangZhe. Petrogeochemistry, geochronology and Hf isotopes of the monzogranite from Xinxian, Southern region in Henan Province [J]. Earth Science, 2016, 41(8): 1275-1294

[8]

LiuQ, ShaoY, LiY, LuoZheng. Processes and ore genesis at the Yaochong Mo deposit, Henan Province, China [J]. Ore Geology Reviews, 2017, 86: 692-706

[9]

MaoJ P F X J F, GaoJ, YeH, LiY, GuoBao. Mesozoic molybdenum deposits in the East Qinling–Dabie Orogenic belt: Characteristics and tectonic settings [J]. Ore Geology Reviews, 2011, 43(1): 264-293

[10]

YangZ, TangXiang. Geochemical characteristics and zircon LA–ICP–MS U–Pb isotopic dating of the Xiaofan rock bodies in North Dabieshan [J]. Acta Geologica Sinica, 2015, 89(4): 692-700

[11]

ChenY, WangP, LiN, YangY P F. The collision-type porphyry Mo deposits in Dabie Shan, China [J]. Ore Geology Reviews, 2017, 81(2): 405-430

[12]

LiS G, HuangF, NieY H, HanW L, LongG, LiH M, ZhangS Q, ZhangZ H. Geochemical and geochronological constraints on the suture location between the North and South China blocks in the Dabie orogen, central China [J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 2011, 26(1): 655-672

[13]

LiuX C, JahnB M, HuJ, LiS Z, LiuX, SongB. Metamorphic patterns and SHRIMP zircon ages of mediumto high grade rocks fromthe Tongbai orogen, central China: Implications for multiple accretion-collision processes prior to terminal continental collision [J]. Journal of Metamorphic Geology, 2011, 29(9): 979-1002

[14]

ChenY, FuShiGold mineralization in west Henan, China [M], 1992, Beijing, China Seismological Press: 1234

[15]

Henan bureau of geology and mineral resources, the regional geology of henan province [M]. Beijing: Geological Publishing House, 1989: 1–772. (in Chinese)

[16]

LiuX J B M, LiS, LiuYong. U–Pb zircon age and geochemical constraints on tectonic evolution of the Paleozoic accretionary orogenic system in the Tongbai orogen, central China [J]. Tectonophysics, 2013, 599(4): 67-88

[17]

BryantD L, AyersJ C, GaoS, MillerC F, ZhangHong. Geochemical, age, and isotopic constraints on the location of the Sino-Korean-Yangtze Suture and evolution of the Northern Dabie Complex, east central China [J]. Geological Society of America Bulletin, 2004, 116(5): 698-717

[18]

HackerB R, RatshbacherL, WebbL E, IrelandT R, CalvertA, DongS, WenkH R, ChateignerD. Exhumation of ultrahigh-pressure continental crust in east-central China: Late Triassic–Early Jurassic tectonic unroofing [J]. Journal of Geophysical Research Solid Earth, 2000, 105(10): 339-364

[19]

ZhengJ, SunM, LuF P N. Mesozoic lower crustal xenoliths and their significance in lithospheric evolution beneath the Sino-Korean Craton [J]. Tectonophysics, 2003, 361(12): 37-60

[20]

JahnB M, WuF Y, LoC H, TsaiC H. Crust-mantle interaction induced by deep subduction of the continental crust: geochemical and Sr–Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China [J]. Chemical Geology, 1999, 365(23): 119-146

[21]

ZhengY, ZhaoZ, WuY, ZhangS, LiuX, WuFu. Zircon U–Pb age, Hf and O isotope constraints on protolith origin of ultrahighpressure eclogite and gneiss in the Dabie orogen [J]. Chemical Geology, 2006, 231(12): 135-158

[22]

YouZ, HanY, YangW, ZhangZ, WeiB, LiuRongThe high-pressure and ultra high-pressure metamorphic belt in the east qinling and dabie mountains, China [M], 1996, Wuhan, China University of Geosciences Press: 1150

[23]

GaoY, MaoJ, YeJ, LiF, LiY, LuoZ, XiongB, MengFang. Geochronology, geochemistry and Sr–Nd–Pb isotopic constraints on the origin of the Qian’echong porphyry Mo deposit, Dabie orogen, east China [J]. Journal of Asian Earth Sciences, 2014, 85: 163-177

[24]

FanW, GuoF, WangY, ZhangMing. Late Mesozoic volcanism in the northern Huaiyang tectono-magmatic belt, central China: Partial melts from a lithospheric mantle with subducted continental crust relicts beneath the Dabie orogen [J]. Chemical Geology, 2004, 209(12): 27-48

[25]

HeY, LiS H J, HuangF, LiuS, HouZhen. Post-collisional granitoids from the Dabie orogen: New evidence for partial melting of athickened continental crust [J]. Geochimica et Cosmochimica Acta, 2011, 75(13): 3815-3838

[26]

MiM, ChenY, YangY, WangP, LiF, WanS, XuYou. Geochronology and geochemistry of the giant Qian’echong Mo deposit, Dabie Shan, eastern China: Implications for ore genesis and tectonic setting [J]. Gondwana Research, 2015, 27(3): 1217-1235

[27]

WangG, NiP, YuW, ChenH, JiangL, WangB, ZhangH, LiPeng. Petrogenesis of Early Cretaceous post-collisional granitoids at Shapinggou, Dabie Orogen: Implications for crustal architecture and porphyry Mo mineralization [J]. Lithos, 2014, 184–187(1): 393-415

[28]

WangP, WangY, YangYong. Zircon U–Pb geochronology and isotopic geochemistry of the Tangjiaping Mo deposit, Dabie Shan, eastern China: Implications for ore genesis and tectonic setting [J]. Ore Geology Reviews, 2017, 81(2): 288-300

[29]

ZhaoZ, ZhengY, WeiC, WuFu. Origin of post collisional magmatic rocks in the Dabie orogen: Implications for crust-mantle interaction and crustal architecture [J]. Lithos, 2011, 126(12): 99-114

[30]

MaC, LiZ E C, YangK, WangRen. A post-collisional magmatic plumbing system: Mesozoic granitoid plutons fromthe Dabieshan high-pressure and ultrahigh pressure metamorphic zone, east-central China [J]. Lithos, 1998, 45(1–4): 431-456

[31]

MaoJ W, PirajnoP, CookN. Mesozoic metallogeny in East China and corresponding geodynamic settings–An introduction to the special issue [J]. Ore Geology Reviews, 2011, 43(1): 1-7

[32]

MengFang. Study on Rock-forming and ore-forming of the Lingshan pluton in the northern margin of Dabie Mountains [D]. Chinese Academy of Geological Sciences, 2013

[33]

ZhouL, XiaQ, ZhengY, HuZhao. Polyphase growth of garnet in eclogite from the Hong'an orogen: Constraints from garnet zoning and phase equilibrium [J]. Lithos, 2014, 206–207: 79-99

[34]

CaoJ, WuQ, LiH, OuyangC, KongH, XiXiao. Metallogenic mechanism of Pingguo bauxite deposit, Western Guangxi, China: Constraints from REE geochemistry and multi-fractal characteristics of major elements in bauxite ore [J]. Journal of Central South University, 2017, 24(7): 1627-1636

[35]

SunS S, McdonoughW F. Chemical and isotopic systematics of oceanic basalts: Implication for the mantle composition and process [J]. Geological Society of London Special Publication, 1989, 42(1): 313-345

[36]

WatsonE B, HarrisonT M. Zircon saturation revisited: Temperature and compositional effects in variety of crustal magma types [J]. Eeath and Planetaty Science Letters, 1983, 64(2): 295-304

[37]

MiddlemostE A. Naming materials in the magma/igneous rock system [J]. Earth-Science Reviews, 1994, 37(34): 215-224

[38]

StreckeisenA. To each plutonic rock its proper name [J]. Earth–Science Reviews, 1976, 12(1): 1-33

[39]

RickwoodP C. Boundary lines within petrologic diagrams which use oxides of major and minor elements [J]. Lithos, 1989, 22(4): 247-263

[40]

CollinsW J, BeamsS D, WhiteA J R, ChappellB W. Nature and origin of A-type granites with particular reference to southeastern Australia [J]. Contributions to Mineralogy and Petrology, 198280

[41]

WhalenJ B, CurrieK L, ChappellB W. A-type granites: Geochemical characteristics, discrimination and petrogenesis [J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419

[42]

FrostB R, BarnesC G, CollinsW J, ArculusR J, EllisD J, FrostC D. A geochemical classification for granitic rocks [J]. Journal of Petrology, 2001, 42(11): 2033-2048

[43]

PatinoD A E. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids [J]. Geology, 1997, 25(8): 743-746

[44]

PengM, WuY, GaoS, ZhangH, WangJ, LiuX, GongH, ZhouL, HuZ, LiuY, YuanHong. Geochemistry, zircon U–Pb age and Hf isotope compositions of Paleoproterozoic aluminous A-type granites from the Kongling terrain, Yangtze Block: Constraints on petrogenesis and geologic implications [J]. Gondwana Research, 2012, 22(1): 140-151

[45]

MillerC F, McdowellS M, MapesR W. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance [J]. Geology, 2003, 31(6): 529-532

[46]

DefantM J, DrummondM S. Derivation of some modern arc magmas by melting of young subducted lithosphere [J]. Nature, 1990, 347(6294): 662-665

[47]

RudnickR L, GaoShanComposition of the continental crust [M]//Treatise on Geochemistry, Volume 3, 2003, Oxford, Elsevier-Pergamon

[48]

GaoY, MaoJ, YeH, LiY, LuoZ, YangZe. Petrogenesis of ore-bearing porphyry from the Tangjiaping porphyry Mo deposit, Dabie orogen: Zircon U–Pb geochronology, geochemistry and Sr–Nd–Hf isotopic constraints [J]. Ore Geology Reviews, 2016, 79: 288-300

[49]

AmesL, TiltonG R, ZhouGao. Timing of collision of the Sino-Korean and Yangtze Blocks: U–Pb zircon dating of coesite–bearing eclogites [J]. Geology, 1993, 21(3): 339-342

[50]

HackerB R, RatschbacherL, LiouJ G. Subduction, collision and exhumation in the ultrahighpressure Qinling–Dabie orogen [J]. Geological Society, 2004157

[51]

GaoS, LuoT, ZhangB, ZhangH, HanY, ZhaoZ, HuYi. Chemical composition of the continental crust as revealed by studies in East China [J]. Geochimica et Cosmochimica Acta, 1998, 62(11): 1959-1975

[52]

NiuB, HeZ, SongB, RenJi. SHRIMP dating of the Zhangjiakou volcanic series and its significance [J]. Geological Bulletin China, 2003, 22(2): 140-141

[53]

MaoJ, ChengY, ChenM P F. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings [J]. Mineralium Deposita, 2013, 48(3): 267-294

[54]

LingM, WangF, DingX, HuY, ZhouL Z R E, YangX, SunWei. Cretaceous ridge subduction along the Lower Yangtze River belt, Eastern China [J]. Economic Geology, 2009, 104(2): 303-321

[55]

MaoJ, WangY L B, YuJ, DuA, MeiY, LiY, ZangW S H J, ZhouTao. Molybdenite Re–Os and albite 40Ar–39Ar dating of Cu–Au–Mo and magnetite porphyry systems in the Yangtze River valley and metallogenic implications [J]. Ore Geology Reviews, 2006, 29(34): 307-324

[56]

MaoJ W, XieG Q, BierleinF, QuW J, DuA D, YeH S, PirajnoF, LiH M, GuoB J, LiY F, YangZ Q. Tectonic implications from Re–Os dating of Mesozoic molybdenum deposits in the East Qinling–Dabie orogenic belt [J]. Geochimica et Cosmochimica Acta, 2008, 72(18): 4607-4626

[57]

MaoJ W, XieG Q, PirajnoF, YeH S, WangY B, LiY F, XiangJ F, ZhaoH J. Late Jurassic–Early Cretaceous granite magmatism in Eastern Qinling, central-eastern China: SHRIMP zircon U–Pb ages and tectonic implications [J]. Australian Journal of Earth Sciences, 2010, 57(1): 51-78

[58]

PearceJ A, HarrisN B W, TindleA G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks [J]. Journal of Petrology, 1984, 25(4): 956-983

[59]

ManiarP D, PiccoliP M. Tectonic discrimination of granitoids [J]. Geological Socient of America Bulletin, 1987, 101(5): 365-643

[60]

AlirezaeiS, HassanzadehJ. Geochemistry and zircon geochronology of the Permian A-type Hasanrobat granite, Sanandaj–Sirjan belt: A new record of the Gondwana break-up in Iran [J]. Lithos, 2012, 151(11): 122-134

[61]

BoninB. A-type granites and related rocks: Evolution of a concept, problems and prospects [J]. Lithos, 2007, 97(12): 1-29

AI Summary AI Mindmap
PDF

95

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/