Experimental study on soil improvement with stone columns and granular blankets

Nima Mehrannia , Farzin Kalantary , Navid Ganjian

Journal of Central South University ›› 2018, Vol. 25 ›› Issue (4) : 866 -878.

PDF
Journal of Central South University ›› 2018, Vol. 25 ›› Issue (4) : 866 -878. DOI: 10.1007/s11771-018-3790-z
Article

Experimental study on soil improvement with stone columns and granular blankets

Author information +
History +
PDF

Abstract

Stone column is one of the soil stabilizing methods that is used to increase bearing capacity and decrease the settlement of soft soils. Reinforced and unreinforced granular blankets are now being utilized to overcome the problems of soft soils. In this research, the bearing capacity of stone columns, granular blanket, and a combination of both methods in reinforced and unreinforced modes were studied using scaled physical models. Results show that using granular blanket, stone column, and combination of both improves bearing capacity of soft soils. Using geogrid as the reinforcement of granular blankets and geotextile as stone-column encasement increases the efficiency of granular blankets and stone columns significantly. Additionally, in the case of using geotextile around the stone column, the stress concentration ratio of the stone column will increase as well as its rigidity and bearing capacity.

Keywords

stone column / bearing capacity / geogrid / geotextile / granular blanket / soil improvement

Cite this article

Download citation ▾
Nima Mehrannia, Farzin Kalantary, Navid Ganjian. Experimental study on soil improvement with stone columns and granular blankets. Journal of Central South University, 2018, 25(4): 866-878 DOI:10.1007/s11771-018-3790-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AkimusuruJ O, AkinboladeJ A. Stability of loaded footing on reinforced soil [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1981, 107(6): 819-827

[2]

GuidoV, BiesiadeckiG, SullivanMBearing capacity of a geotextile reinforced foundation [C]//Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering., 198517771780

[3]

YetimogluT, WuJ T, SaglamerA. Bearing capacity of rectangular footings on geogrid-reinforced sand [J]. Journal of Geotechnical Engineering, 1994, 120: 2083-2099

[4]

HatafN, BaziarAUse of tire shreds for bearing capacity improvement of shallow footing on sand [C]//Proceedings of the 3rd Int Conf on Ground Improvement Techniques., 2000189194

[5]

AbdrabboF M, GaaverK E, ElwakilA ZBehavior of square footing on single reinforced soil [C]//Procceding of Geo-Support, 2004, Orlando, Florida, ASCE.: 10151026

[6]

PatraC, DasB, AtalarC. Bearing capacity of embedded strip foundation on geogrid-reinforced sand [J]. Geotextiles and Geomembranes, 2005, 23: 454-462

[7]

SitharamT, SireeshS. Behavior of embedded footings supported on geogrid cell reinforced foundation beds [J]. Geotechnical Testing Journal, 2005, 28(5): 1-12

[8]

ZidanA. Numerical study of behavior of circular footing on geogrid-reinforced sand under static and dynamic loading [J]. Geotechnical and Geological Engineering, 2012, 30: 499-510

[9]

KumarA, WaliaB. Bearing capacity of square footings on reinforced layered soil [J]. Geotechnical and Geological Engineering, 2006, 24: 1001-1008

[10]

AdamsM T, CollinJ G. Large model spread footing load tests on geosynthetic reinforced soil foundations [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123: 66-72

[11]

GreenwoodD AMechanical improvement of soils below ground surface [C]//Proceedings of Ground Improvement Conference, 1970929

[12]

HughesJ M O, WithersN J. Reinforcing of soft cohesive soils with stone columns [J]. Ground Engineering, 1974, 7(3): 42-49

[13]

MckennaJ, EyreW, WolstenholmeD. Performance of an embankment supported by stone columns in soft ground [J]. Geotechnique, 1975, 25: 51-59

[14]

VAN ImpeW FSoil improvement techniques and their evolution [M], 1989, Rotterdam, Netherlands, Balkema

[15]

MurugesanS, RajagopalK. Shear load tests on stone columns with and without geosynthetic encasement [J]. Geotechnical Testing Journal, 2009, 32(1): 1-10

[16]

YooC. Performance of geosynthetic-encased stone columns in embankment construction: numerical investigation [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136: 1148-1160

[17]

YooC, LeeD. Performance of geogrid-encased stone columns in soft ground: Full-scale load tests [J]. Geosynthetics International, 2012, 19: 480-490

[18]

ZhangY, ChanD, WangY. Consolidation of composite foundation improved by geosynthetic-encased stone columns [J]. Geotextiles and Geomembranes, 2012, 32: 10-17

[19]

AlmeidaM, HosseinpourI, RiccioM. Performance of a geosynthetic-encased column (GEC) in soft ground: Numerical and analytical studies [J]. Geosynthetics International, 2013, 20: 252-262

[20]

DashS K, BoraM C. Influence of geosynthetic encasement on the performance of stone columns floating in soft clay [J]. Canadian Geotechnical Journal, 2103, 50: 754-765

[21]

ElsawyM. Behaviour of soft ground improved by conventional and geogrid-encased stone columns, based on FEM study [J]. Geosynthetics International, 2013, 20: 276-285

[22]

MaheshwariP, ChauhanV B. Beams on extensible geosynthetics and stone-column-improved soil [J]. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2013, 166: 233-247

[23]

MccabeB, Kamrat-PietraszewskaD, EganD. Ground heave induced by installing stone columns in clay soils [J]. Proceedings of the Institution of Civil Engineers- Geotechnical Engineering, 2013, 166: 589-593

[24]

ShahuJ, ReddyY. Estimating long-term settlement of floating stone column groups [J]. Canadian Geotechnical Journal, 2014, 51: 770-781

[25]

AliK, ShahuJ, SharmaK. Model tests on single and groups of stone columns with different geosynthetic reinforcement arrangement [J]. Geosynthetics International, 2014, 21: 103-118

[26]

RaithelM, KempfertH G, KirchnerAGeotextileencased columns (GEC) for foundation of a dike on very soft soils [C]//Proceedings of the Seventh International Conference on Geosynthetics, 2002, France, Nice: 10251028

[27]

MurugesanS, RajagopalK. Model tests on geosynthetic encased granular columns [J]. Geosynthetics International, 2007, 14(6): 346-354

[28]

MohapatraS R, RajagopalK, SharmaJ. Direct shear tests on geosynthetic-encased granular columns [J]. Geotextiles and Geomembranes, 2016, 44: 396-405

[29]

MurugesanS, RajagopalK. Geosynthetic-encased stone columns: Numerical evaluation [J]. Geotextiles and Geomembranes, 2006, 24: 349-358

[30]

ChenC F, YangY, XiaoS J, ZhouZ J. Residual settlement calculation of geocell cushion over gravel piles [J]. Journal of Central South University of Technology, 2008, 15: 21-27

[31]

GhazaviM, NazariafsharJ. Bearing capacity of geosynthetic encased stone columns [J]. Geotextiles and Geomembranes, 2013, 38: 26-36

[32]

NazariafsharJ, GhazaviM. Experimental studies on bearing capacity of geosynthetic reinforced stone columns [J]. Arabian Journal for Science and Engineering, 2014, 39: 1559-1571

[33]

GongX N, TianX J, HuW T. Simplified method for predicating consolidation settlement of soft ground improved by floating soil-cement column [J]. Journal of Central South University, 2015, 22: 2699-2706

[34]

IaiS. Similitude for shaking table tests on soil-structure fluid models in 1g gravitational field [J]. Soils and Foundations, 1989, 29(1): 105-118

[35]

WestineP, DodgeF, BakerW. Similarity methods in engineering dynamics: Theory and Practice of Scale Modeling [M]. Elsevier, 2012

[36]

DashS K, BoraM C. Improved performance of soft clay foundations using stone columns and geocell-sand mattress [J]. Geotextiles and Geomembranes, 2013, 41: 26-35

[37]

HongY S, WuC S, YuY S. Model tests on geotextileencased granular columns under 1-g and undrained conditions [J]. Geotextiles and Geomembranes, 2016, 44: 13-27

[38]

MeyerhofG, SastryV. Bearing capacity of piles in layered soils Part 2. Sand overlying clay [J]. Canadian Geotechnical Journal, 1978, 15: 183-189

[39]

SeligE, MckeeK. Static and dynamic behavior of small footings [J]. Journal of the Soil Mechanics and Foundations Division, 1961, 87: 29-50

[40]

ChummerA V. Bearing capacity theory from experimental results [J]. J Soil Mech Found Div, ASCE, 1972, 98(12): 1311-1324

[41]

NayakN V. Recent Advances in Ground Improvements by Stone Column [C]//Proceedings of Indian Geotechnical Conference, IGC-83. Madras, India, 1983, 1: 5-19

[42]

FattahM Y, ShlashK T, Al-WailyM J. Stress concentration ratio of model stone columns in soft clays [J]. Geotechnical Testing Journal, 2011, 34(1): 1-11

[43]

FoxZ PCritical state, dilatancy and particle breakage of mine waste rock [D], 2011, Fort Collins, USA, Colorado State University

[44]

StoeberJ NEffects of maximum particle size and sample scaling on the mechanical behavior of mine waste rock: A critical state approach [D]. Fort Collins, 2012, Colorado State University, USA

[45]

BaiX H, HuangX Z, ZhangW. Bearing capacity of square footing supported by a geobelt-reinforced crushed stone cushion on soft soil [J]. Geotextiles and Geomembranes, 2013, 38: 37-42

[46]

GuidoV A, ChangD K, SweeneyM A. Comparison of geogrid and geotextile reinforced earth slabs [J]. Canadian Geotechnical Journal, 1986, 23: 435-440

[47]

OmarM, DasB, PuriV, YenS. Ultimate bearing capacity of shallow foundations on sand with geogrid reinforcement [J]. Canadian Geotechnical Journal, 1993, 30: 545-549

[48]

LathaG M, SomwanshiA. Bearing capacity of square footings on geosynthetic reinforced sand [J]. Geotextiles and Geomembranes, 2009, 27: 281-294

[49]

DebK, SamadhiyaN K, NamdeoJ B. Laboratory model studies on unreinforced and geogrid-reinforced sand bed over stone column-improved soft clay [J]. Geotextiles and Geomembranes, 2011, 29: 190-196

[50]

MosallanezhadM, HatafN, GhahramaniAThree dimensional bearing capacity analysis of granular soil, reinforced with innovative grid-anchor system [J], 2010, 34(B4): 419-431

[51]

DasB, KhingK. Foundation on layered soil with geogrid reinforcement—Effect of a void [J]. Geotextiles and Geomembranes, 1994, 13: 545-553

[52]

Abu-FarsakhM, ChenQ, SharmaR. An experimental evaluation of the behavior of footings on geosynthetic-reinforced sand [J]. Soils and Foundations, 2013, 53: 335-348

[53]

ChakrabortyM, KumarJ. Bearing capacity of circular foundations reinforced with geogrid sheets [J]. Soils and Foundations, 2014, 54: 820-832

[54]

MurugesanS, RajagopalK. Studies on the behavior of single and group of geosynthetic encased stone columns [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 136: 129-139

[55]

DebK, MohapatraS R. Analysis of stone column-supported geosynthetic-reinforced embankments [J]. Applied Mathematical Modelling, 2013, 37: 2943-2960

[56]

BarksdaleR D, BachusR CDesign and construction of stone column volume I final report, 1983

[57]

ShahuJ T, MadhavM R, HayashiS. Analysis of soft ground-granular pile granular mat system [J]. Computers and Geotechnics, 2000, 27: 45-62

[58]

ChristoulasS T, BouckovalasG, GiannarosC H. An experimental study on model stone columns [J]. Soils and Foundations Journal, 2000, 40(6): 11-22

[59]

AboshiH, IchimotoE, HaradaK, EmokiMThe composer-a method to improve the characteristics of soft clays by inclusion of large diameter sand columns [C]//Proceedings of International Conference on Soil Reinforcement. Paris, 1979211216

[60]

WongH Y. Vibroflotation e its effect on weak cohesive soils [J]. Civil Engineering (London), 1975, 82: 44-76

[61]

MadhavM R, VitkarR P. Strip footing on weak clay stabilized with a granular trench or pile [J]. Canadian Geotechnical Journal, 1975, 15(4): 605-609

AI Summary AI Mindmap
PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/