An adaptive backstepping sliding mode method for flight attitude of quadrotor UAVs

Xue-ying Jiang , Cheng-li Su , Ya-peng Xu , Kai Liu , Hui-yuan Shi , Ping Li

Journal of Central South University ›› 2018, Vol. 25 ›› Issue (3) : 616 -631.

PDF
Journal of Central South University ›› 2018, Vol. 25 ›› Issue (3) : 616 -631. DOI: 10.1007/s11771-018-3765-0
Article

An adaptive backstepping sliding mode method for flight attitude of quadrotor UAVs

Author information +
History +
PDF

Abstract

To overcome nonlinear and 6-DOF (degrees of freedom) under-actuated problems for the attitude and position of quadrotor UAVs, an adaptive backstepping sliding mode method for flight attitude of quadrotor UAVs is proposed, in which an adaptive law is designed to online estimate the parameter variations and the upper bound of external disturbances and the assessments is utilized to compensate the backstepping sliding mode control. In addition, the tracking error of the design method is shown to asymptotically converge to zero by using Lyapunov theory. Finally, based on the numerical simulation of quadrotor UAVs using the setting parameters, the results show that the proposed control approach can stabilize the attitude and has hover flight capabilities under the parameter perturbations and external disturbances.

Keywords

quadrotor UAVs / adaptive backstepping sliding mode / adaptive law / tracking error

Cite this article

Download citation ▾
Xue-ying Jiang, Cheng-li Su, Ya-peng Xu, Kai Liu, Hui-yuan Shi, Ping Li. An adaptive backstepping sliding mode method for flight attitude of quadrotor UAVs. Journal of Central South University, 2018, 25(3): 616-631 DOI:10.1007/s11771-018-3765-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

KurnazS, CetinO, KaynakO. Fuzzy logic based approach to design of flight control and navigation tasks for autonomous unmanned aerial vehicles [J]. Journal of Intelligent & Robotic Systems, 2009, 54(1–3): 229-244

[2]

RyllM, BulthoffH H, GiordanoP R. Modeling and control of a quadrotor UAV with tilting propellers [C]. 2012 IEEE International Conference on Robotics and Automation (ICRA), 2012, RiverCentre, Saint Paul, Minnesota, USA, IEEE: 46064613

[3]

GupteS, MohandasP I T, ConradJ M. A survey of quadrotor unmanned aerial vehicles [C]. Southeastcon, 2012 Proceedings of IEEE, 2012, Orlando, FL, USA, IEEE: 16

[4]

NgT T H, LengG S B. Design of small-scale quadrotor unmanned air vehicles using genetic algorithms [J]. Proceedings of the Institution of Mechanical Engineers Part G, Journal of Aerospace Engineering, 2007, 221(5): 893-905

[5]

DydekZ T, AnnaswamyA M, LavretskyE. Adaptive control of quadrotor UAVs in the presence of Actuator Uncertainties [C]. AIAA Infotech@aerospace, 2010, Atlanta, Georgia, AIAA: 19

[6]

DydekZ T, AnnaswamyA M, LavretskyE. Adaptive control of quadrotor UAVs: A design trade study with flight evaluations [J]. IEEE Transactions on Control Systems Technology, 2013, 21(4): 1400-1406

[7]

BolandiH, RezaeiM, MohsenipourR N, SmailzadehS M. Attitude control of a quadrotor with optimized PID controller [J]. Intelligent Control & Automation, 2013, 4(3): 342-349

[8]

XianB, ZhaoB, ZhangY, ZhangXu. A low-cost hardware-in-the-loop-simulation testbed of quadrotor UAV and implementation of nonlinear control schemes [J]. Robotica, 2015, 1: 1-25

[9]

EfeM Ö. Neural network sssisted computationally simple PIλDμ control of a quadrotor UAV [J]. IEEE Transactions on Industrial Informatics, 2011, 7(2): 354-361

[10]

LimH, ParkJ, LeeD, KimH J. Build your own quadrotor: Open-source projects on unmanned aerial vehicles [J]. IEEE Robotics & Automation Magazine, 2012, 19(3): 33-45

[11]

BiY-k, DuanH-bin. Implementation of autonomous visual tracking and landing for a low-cost quadrotor [J]. Optik— International Journal for Light and Electron Optics, 2013, 124(18): 3296-3300

[12]

IslamS, LiuP X, SaddikA E. Nonlinear adaptive control for quadrotor flying vehicle [J]. Nonlinear Dynamics, 2014, 78(1): 117-133

[13]

ZhaoS T, GaoX W. Robust adaptive control for a class of uncertain non-affine nonlinear systems using neural state feedback compensation [J]. Journal of Central South University, 2016, 23(3): 636-643

[14]

RinaldiF, ChiesaS, QuagliottiF. Linear quadratic control for quadrotors UAVs dynamics and formation fight [J]. Journal of Intelligent & Robotic Systems, 2013, 70(1–4): 203-220

[15]

SaticiA C, PoonawalaH, SpongM W. Robust optimal control of quadrotor UAVs [J]. Access IEEE, 2013, 1: 79-93

[16]

RyanT, KimH J. LMI-based gain synthesis for simple robust quadrotor control [J]. IEEE Transactions on Automation Science & Engineering, 2013, 10(4): 1173-1178

[17]

JuradoF, Castillo-ToledoB, GennaroS D. Stabilization of a quadrotor via Takagi-Sugeno fuzzy control [C]. The 12th World Multi-Conference on Systemics, Cybernetics and Informatics, 200816

[18]

SantosM, LópezV, MorataF. Intelligent fuzzy controller of a quadrotor [C]. 2010 International Conference on Intelligent Systems and Knowledge Engineering (ISKE), 2010, Hangzhou, China, IEEE: 141146

[19]

JohnsonM D, AyoubiM A. Shared fuzzy control of multiple quadrotor UAVs with time-dependent delay and bounded control-input constraint [C]. Proceedings of ASME 2015 Dynamic Systems and Control Conference, 2015, Columbus, Ohio, USA, ASME: 110

[20]

CastilloP, LozanoR, DzulA EModelling and Control of Mini-Flying Machines [M], 2005, London, Springer Publishing Company, Incorporated

[21]

NicotraM M, GaroneE, NaldiR, MarconiL. Nested saturation control of an UAV carrying a suspended load [C]. 2014 American Control Conference (ACC), 2014, Portland, Oregon, USA, IEEE: 35853590

[22]

AlexisK, NikolakopoulosG, TzesA. Model predictive quadrotor control: attitude, altitude and position experimental studies [J]. Iet Control Theory & Applications, 2012, 6(12): 1812-1827

[23]

SadeghzadehI, AbdolhosseiniM Z Y-min. Payload drop application using an unmanned quadrotor helicopter based on gain-scheduled PID and model predictive control [J]. Unmanned Systems, 2012, 2(1): 386-395

[24]

ShiH-y, SuC-l, CaoJ-t, LiP, SongY-l, LiN-bo. Incremental multivariable predictive functional control and its application in a gas fractionation unit [J]. Journal of Central South University, 2015, 22(12): 4653-4668

[25]

WangL-f, HeY-c, ZhangZ-x, HeC-kui. Trajectory tracking of quadrotor aerial robot using improved dynamic inversion method [J]. Intelligent Control & Automation, 2013, 4(4): 343-348

[26]

MokhtariA, M'sirdiN K, MeghricheK, BelaidiA. Feedback linearization and linear observer for a quadrotor unmanned aerial vehicle [J]. Advanced Robotics the International Journal of the Robotics Society of Japan, 2006, 20(1): 71-91

[27]

ChoiI H, BangH C. Quadrotor-tracking controller design using adaptive dynamic feedback-linearization method [J]. Proceedings of the Institution of Mechanical Engineers Part G, Journal of Aerospace Engineering, 2014, 228(12): 2329-2342

[28]

ChiewS H, ZhaoW H, GoT H. Swarming coordination with robust control Lyapunov function approach [J]. Journal of Intelligent & Robotic Systems, 2013, 78(34): 499-515

[29]

XuR, ÖzgünerU. Sliding mode control of a class of underactuated systems [J]. Automatica, 2008, 44(1): 233-241

[30]

LeeD, KimH J, SastryS. Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter [J]. International Journal of Control Automation & Systems, 2009, 7(3): 419-428

[31]

SharifiF, MirzaeiM, GordonB W Z Y-min. Fault tolerant control of a quadrotor UAV using sliding mode control [C]. 2010 Conference on Control and Fault Tolerant Systems Nice, 2010, France, IEEE: 239244

[32]

EfeM. Battery power loss compensated fractional order sliding mode control of a quadrotor UAV [J]. Asian Journal of Control, 2012, 14(2): 413-425

[33]

ZhengE-h, XiongJ-j, LuoJ-liang. Second order sliding mode control for a quadrotor UAV [J]. ISA Transactions, 2014, 53(4): 1350-1356

[34]

XiongJ-j, ZhangG-bo. Discrete time sliding mode control for a quadrotor UAV [J]. Optik— International Journal for Light and Electron Optics, 2016, 127(8): 3718-3722

[35]

MadaniT, BenallegueA. Control of a quadrotor mini-helicopter via full state backstepping technique [C]. Proceedings of the IEEE Conference on Decision and Control, 200615151520

[36]

PolliniL. Simulation and robust backstepping control of a quadrotor aircraft [C]. AIAA Modeling and Simulation Technologies Conference and Exhibit, 2008118

[37]

SaifA A, DhaifullahM, Al-MalkiM, ShafieM E. Modified backstepping control of quadrotor [C]. 2012 9th International Multi-Conference on Systems, Signals and Devices (SSD), 2012, Chemnitz, IEEE: 16

[38]

LeeD, HaC-s, ZuoZ-yuan. Backstepping control of quadrotor-type UAVs and its application to teleoperation over the Internet [M]. Intelligent Autonomous Systems 12, 2013217225

[39]

HaC-s, ZuoZ-y, ChoiB F, LeeD. Passivitybased adaptive backstepping control of quadrotor-type UAVs [J]. Robotics & Autonomous Systems, 2014, 62(9): 1305-1315

[40]

TanC K, WangJ-l, PawY C, NgT Y. Tracking of a moving ground target by a quadrotor using a backstepping approach based on a full state cascaded dynamics [J]. Applied Soft Computing, 2016, 47(10): 47-62

[41]

GongX, BaiY, HouZ-c, ZhaoC-j, TianY-t, SunQiang. Backstepping sliding mode tracking control of Quad rotor under input saturation [J]. International Journal of Intelligent Computing & Cybernetics, 2012, 5(4): 515-532

[42]

NaddaS, SwarupA. Development of backstepping based sliding mode control for a quadrotor [C]. 2014 IEEE 10th International Colloquium on Signal Processing & its Applications (CSPA), 2014, Kuala Lumpur, Malaysia, IEEE: 1013

[43]

MinY-y, LiuY-gang. Barbalat lemma and its application in analysis of system stability [J]. Journal of Shandong University, 2007, 37(1): 51-50

[44]

BouabdallahS, SiegwartR. Backstepping and sliding-mode techniques applied to an indoor micro quadrotor [C]. Proceedings of the 2005 IEEE International Conference of Robotics and Automation, 2005, Barcelona, Spain, IEEE: 22472252

AI Summary AI Mindmap
PDF

163

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/