Synthesis of lithium difluoro(oxalate)borate (LiODFB), phase diagram and ions coordination of LiODFB in dimethyl carbonate

Hong-ming Zhou , Kai-wen Xiao , Jian Li , De-min Xiao , Yi-xiong Jiang

Journal of Central South University ›› 2018, Vol. 25 ›› Issue (3) : 550 -560.

PDF
Journal of Central South University ›› 2018, Vol. 25 ›› Issue (3) : 550 -560. DOI: 10.1007/s11771-018-3760-5
Article

Synthesis of lithium difluoro(oxalate)borate (LiODFB), phase diagram and ions coordination of LiODFB in dimethyl carbonate

Author information +
History +
PDF

Abstract

A new two-step synthetic method was successfully developed to simplify the recrystallization process of lithium difluoro(oxalate)borate (LiODFB). Meanwhile, the purity of LiODFB as-prepared was determined by NMR, ICP-AES and Karl Fisher measurements, respectively. The as-prepared LiODFB presents a high purity up to 99.95%. Its metal ions and water contents are under good control as well. Besides, its structure information and thermal properties were confirmed by FTIR, Raman and DSC-TGA analyses, respectively. LiODFB exerts fine thermostability and hypo-water-sensitivity and its structure information agrees well with previous literature. Furthermore, a combination of phase diagram and Raman spectroscopy were utilized to study the thermal phase behavior and ions coordination of LiODFB-DMC binary system to optimize the synthesis and recrystallization process. Although there are three types of molecular interaction forms (CIPs, AGG-IIa, AGG-IIIb) in LiODFB-DMC binary system, LiODFB can only be isolated as large single crystal solvate as LiODFB·(DMC)3/2 by slowly cooling subjected to the nucleation kinetics. Therefore, the fundamental information of our work is helpful in accelerating the application of LiODFB in Li-ion secondary batteries.

Keywords

lithium difluoro(oxalate)borate / two-step synthesis / recrystallization / phase diagram / ions coordination

Cite this article

Download citation ▾
Hong-ming Zhou, Kai-wen Xiao, Jian Li, De-min Xiao, Yi-xiong Jiang. Synthesis of lithium difluoro(oxalate)borate (LiODFB), phase diagram and ions coordination of LiODFB in dimethyl carbonate. Journal of Central South University, 2018, 25(3): 550-560 DOI:10.1007/s11771-018-3760-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ReddyT BLinden’s handbook of batteries, fourth edition [M], 2011, New York, McGraw-Hill

[2]

ScrosatiB. Challenge of portable power [J]. Nature, 1995, 373(6515): 557-558

[3]

WhittinghamM S. Lithium batteries and cathode materials [J]. Chemical Reviews, 2004, 104(10): 4271-4302

[4]

GoodenoughJ B, KimY. Challenges for rechargeable Li batteries [J]. Chemistry of Materials, 2010, 22(3): 587-603

[5]

HuM, PangX-l, ZhouZhen. Recent progress in high-voltage lithium ion batteries [J]. Journal of Power Sources, 2013, 237: 229-242

[6]

Smart M C, Krause F C, West W C, Soler J, Prakash G K S, Ratnakumer B V. Development of Li-ion battery electrolytes with improved safety for NASA applications [EB/OL]. [2016–05–20]. http://ma.ecsdl.org/content/MA2010-01/3/167.full.pdf.

[7]

ZhangS-shui. An unique lithium salt for the improved electrolyte of Li-ion battery [J]. Electrochemistry Communications, 2006, 8(9): 1423-1428

[8]

LiC-l, ZhaoY-y, ZhangH-m, LiuJ-l, JingJ, CuiX-l, LiS-you. Compatibility between LiNi0.5Mn1.5O4 and electrolyte based upon lithium bis(oxalate)borate and sulfolane for high voltage lithium-ion batteries [J]. Electrochimica Acta, 2013, 104: 134-139

[9]

ZhouH-m, XiaoK-w, LiJian. Lithium difluoro-(oxalate)borate and LiBF4 blend salts electrolyte for LiNi0.5Mn1.5O4 cathode material [J]. Journal of Power Sources, 2016, 302: 274-282

[10]

SivakumarP, NayakP K, MarkoyskyB, AurbachD, GedankenA. Sonochemical synthesis of LiNi0.5Mn1.5O4 and its electrochemical performance as a cathode material for 5 V Li-ion batteries[J]. Ultrasonics Sonochemistry, 2015, 26: 332-339

[11]

ShiehD, HsiehP, YangM. Effect of mixed LiBOB and LiPF6 salts on electrochemical and thermal properties in LiMn2O4 batteries [J]. Journal of Power Sources, 2007, 174(2): 663-667

[12]

XiangH F, WangH, ChenC H, GeX W, GuoS, SunJ H, HuW Q. Thermal stability of LiPF6-based electrolyte and effect of contact with various delithiated cathodes of Li-ion batteries [J]. Journal of Power Sources, 2009, 191(2): 575-581

[13]

ZhangS-shui. Lithium oxalyldifluoroborate as a salt for the improved electrolytes of Li-Ion batteries [J]. The Electrochemical Society Transactions, 2007, 3(27): 59-68

[14]

LiuJ, ChenZ-h, BuskingS, AmineK. Lithium difluoro(oxalato)borate as a functional additive for lithium-ion batteries[J]. Electrochemistry Communications, 2007, 9(3): 475-479

[15]

AllenJ L, HanS D, BoyleP D, HendersonW A. Crystal structure and physical properties of lithium difluoro(oxalato)borate (LiDFOB or LiBF2Ox) [J]. Journal of Power Sources, 2011, 196(22): 9737-9742

[16]

TsujiokaS, TakaseH, TakahashiM, SugimotoH, KoideMelectrolyte for electrochemical device: US, 6787267B2 [P], 2004

[17]

TsujiokaS, TakaseH, TakahashiMProcess for synthesizing ionic metal complex: US, 6849752B2 [P], 2005

[18]

LiS-y, ZhaoW, CuiX-l, ZhaoY-y, LiB-c, ZhangH-m, LiY-l, LiG-x, YeX-s, LuoY-chun. An improved method for synthesis of lithium difluoro(oxalato)borate and effects of sulfolane on the electrochemical performances of lithium-ion batteries [J]. Electrochimica Acta, 2013, 91: 282-292

[19]

ZhouH-m, LiuF-r, LiJ, LiY-f, ZhuY-h, FangZ-qi. Hydrolysis and influences on physical and chemical properties for lithium battery electrolyte LiODFB [J]. Journal of Central South University: Science and Technology, 2012, 43(11): 4228-4233

[20]

ZhouH-m, FangZ-q, LiJian. LiPF6 and lithium difluoro (oxalato)borate/ethylene carbonate+ dimethyl carbonate+ethyl(methyl)carbonate electrolyte for Li4Ti5O12 anode [J]. Journal of Power Sources, 2013, 230: 148-154

[21]

SeoD M, BorodinO, HanS D, LyQ, BoyelP D, HendersonW A. Electrolyte solvation and ionic Association I. Acetonitrile-lithium salt mixtures: intermediate and high associated salts [J]. Journal of the Electrochemical Society, 2012, 159(5): A553-A565

[22]

SeoD M, BoyleP D, HendersonW A. Poly [[(acetonitrile)lithium(I)]-µ3-tetrafluoridoborato] [J]. Acta Crystallo-graphica Section E–Structure Reports Online, 2011

[23]

GafirovM M, KirillovS A, GorobetsM I, RabadanovK S, AtaevM B, TretyakovD O, AydemirovK M. Phase equilibria and ionic solvation in the lithium tetrafluoroborate-dimethylsulfoxide system [J]. Journal of Applied Spectroscopy, 2015, 81(6): 912-918

[24]

HanS D, BoraodinO, AllenJ L, SeoD M, McowenD W, HendersonW A. Electrolyte solvation and ionic association. IV. Acetonitrile-lithium difluoro(oxalato)borate (LiDFOB) mixtures [J]. Journal of The Electrochemical Society, 2013, 160(11): A2100-A2110

[25]

KirillovS A, GafurovM M, GorobetsM I, AtaevM B. Raman study of ion pairing in solutions of lithium salts in dimethyl sulfoxide, propylene carbonate and dimethyl carbonate [J]. Journal of Molecular Liquids, 2014, 199: 167-174

[26]

GorobetsM I, AtaevM B, GafurovM M, KirillovS A. Raman study of solvation in solutions of lithium salts in dimethyl sulfoxide, propylene carbonate and dimethyl carbonate [J]. Journal of Molecular Liquids, 2015, 205: 98-109

[27]

KirillovS A, GorobetsM I, TretyakovD O, AtaevM B, GafurovM M. Phase diagrams and conductivity of lithium salt systems in dimethyl sulfoxide, propylene carbonate and dimethyl carbonate [J]. Journal of Molecular Liquids, 2015, 205: 78-84

[28]

PerronG, CoutureL, LambertD, DesnoyersJ E. Phase diagrams, molar volumes, heat capacities, conductivities and viscosities of some lithium salts in aprotic solvents [J]. Journal of Electroanalytical Chemistry, 1993, 355: 277-296

[29]

SeoD M, BorodinO, BaloghD, O’ConnellM, LyQ, HanS D, PasseriniS, HendersonW A. Electrolyte solvation and ionic association III. Acetonitrile-Lithium salt mixtures–transport properties [J]. Journal of the Electrochemical Society, 2013, 160(8): A1061-A1070

[30]

HanS, AllenJ L, JónssonE, JohanssonP, McowenD W, BoyleP D, HendersonW A. Solvate structures and computational/spectroscopic characterization of lithium difluoro(oxalato)borate (LiDFOB) electrolytes [J]. The Journal of Physical Chemistry C, 2013, 117(11): 5521-5531

[31]

StungisG E. NMR of HBF4 [J]. The Journal of Chemical Physics, 1971, 55(1): 263

[32]

PlakhotnikV N, ErnstL, SakhaiiP, TovmashN F, SchmutzlerR. Interparticle interaction in lithium tetrafluoroborate solutions [J]. Journal of Fluorine Chemistry, 1999, 982133-135

[33]

VoigtN, WüllenV L. The effect of plastic-crystalline succinonitrile on the electrolyte system PEO:LiBF4: Insights from solid state NMR [J]. Solid State Ionics, 2014, 260: 65-75

[34]

VoigtN, WüllenV L. The mechanism of ionic transport in PAN-based solid polymer electrolytes [J]. Solid State Ionics, 2012, 208: 8-16

[35]

ShanthiM, MathewC M, UlaganathanM, RajendranS. FT-IR and DSC studies of poly(vinylidene chloride-co-acrylonitrile) complexed with LiBF4 [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013, 109: 105-109

[36]

ZinigradE, Larush-AsrafL, SalitraG, SprecherM, AurbachD. On the thermal behavior of Li bis(oxalato)borate LiBOB [J]. Thermochimica Acta, 2007, 457(12): 64-69

[37]

XuK. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries [J]. Chemical Reviews, 2004, 104(10): 4303-4418

[38]

AfrozT, SeoD M, HanS D, BoyleP D, HendersonW A. Structural interactions within lithium salt solvates: Acyclic carbonates and esters [J]. The Journal of Physical Chemistry C, 2015, 119(13): 7022-7027

AI Summary AI Mindmap
PDF

267

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/