Preparation of α-calcium sulfate hemihydrate whiskers with high aspect ratios in presence of a minor amount of CuCl2·2H2O

Qing-jun Guan , Wei Sun , Run-qing Liu , Zhi-gang Yin , Chen-hu Zhang

Journal of Central South University ›› 2018, Vol. 25 ›› Issue (3) : 526 -533.

PDF
Journal of Central South University ›› 2018, Vol. 25 ›› Issue (3) : 526 -533. DOI: 10.1007/s11771-018-3757-0
Article

Preparation of α-calcium sulfate hemihydrate whiskers with high aspect ratios in presence of a minor amount of CuCl2·2H2O

Author information +
History +
PDF

Abstract

In order to produce α-calcium sulfate hemihydrate (α-CaSO4·0.5H2O) whiskers with high aspect ratios, a minor amount of CuCl2·2H2O was used as the modifying agent in the process of hydrothermal treatment of calcium sulfate dihydrate (CaSO4·2H2O) precursor. The presence of 2.60×10-3 mol/L CuCl2·2H2O resulted in the increase of the aspect ratios of α-CaSO4·0.5H2O whiskers from 81 to 253. The preferential adsorption of Cu2+ on the negative {110} and {100} facets of α-CaSO4·0.5H2O crystal structures was confirmed by EDS and XPS. And ATR-FTIR demonstrated the ligand adsorption of Cu2+ on the surface of α-CaSO4·0.5H2O whiskers. The experimental results reveal that the whiskers with high aspect ratios are attributed to the adsorption of Cu2+, which promotes the 1-D growth of α-CaSO4·0.5H2O whiskers along the c axis.

Keywords

α-CaSO4·0.5H2O whisker / CuCl2·2H2O / hydrothermal treatment / aspect ratio

Cite this article

Download citation ▾
Qing-jun Guan, Wei Sun, Run-qing Liu, Zhi-gang Yin, Chen-hu Zhang. Preparation of α-calcium sulfate hemihydrate whiskers with high aspect ratios in presence of a minor amount of CuCl2·2H2O. Journal of Central South University, 2018, 25(3): 526-533 DOI:10.1007/s11771-018-3757-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

CaoY, GaloppiniE, ReyesP I, DuanZ-q, LuY-cheng. Morphology effects on the biofunctionalization of nanostructured ZnO [J]. Langmuir, 2012, 28(21): 7947-7951

[2]

SpanoF, MassaroA, BlasiL, MalerbaM, CingolaniR, AthanassiouA. In situ formation and size control of gold nanoparticles into chitosan for nanocomposite surfaces with tailored wettability [J]. Langmuir, 2012, 28(8): 3911-3917

[3]

TsaggeosK, MasieraN, NiwickaA, DokorouV, SiskosM G, SkoulikaS, MichaelidesA. Crystal structure, thermal behavior, and photochemical reactivity of a series of co-crystals of trans-1, 2-bis (4-pyridyl) ethylene with dicarboxylic acids [J]. Crystal Growth and Design, 2012, 12(5): 2187-2194

[4]

LiuC-j, ZhaoQ, WangY-g, ShiP-y, JiangM-fa. Surface modification of calcium sulfate whisker prepared from flue gas desulfurization gypsum [J]. Applied Surface Science, 2015, 360: 263-269

[5]

WangL, MaJ-h, GuoZ-w, DongB-s, WangG-min. Study on the preparation and morphology of calcium sulfate whisker by hydrothermal synthesis method [J]. Materials Science and Technology, 2006, 14(6): 626-629

[6]

MiaoM, FengX, WangG-l, CaoS-m, ShiW, ShiL-yi. Direct transformation of FGD gypsum to calcium sulfate hemihydrate whiskers: Preparation, simulations, and process analysis [J]. Particuology, 2015, 19(2): 53-59

[7]

WangX, YangL-s, ZhuX-f, YangJ-kuan. Preparation of calcium sulfate whiskers from FGD gypsum via hydrothermal crystallization in the H2SO4-NaCl-H2O system [J]. Particuology, 2014, 17: 42-48

[8]

LiuL, YinN, KangM-q, WangX-kui. Study on FeSO4 whisker reinforcing and toughening mechanisms for polyurethane elastomer [J]. Acta Polymerica Sinica, 2001, 80(2): 245-249

[9]

HuX-l, YuM-f. Study of calcium sulfate whiskers modified bismaleimide resin by friction and wear properties [J]. Acta Polymerica Sinica, 2006, 6(5): 686-691

[10]

LiuJ-y, RenL, WeiQ, WuJ-l, LiuS, WangY-j, LiG-yuan. Microstructure and properties of polycaprolactone/calcium sulfate particle and whisker composites [J]. Polymer Composites, 2012, 33(4): 501-508

[11]

WangJ-c, TangL-j, WuD, GuoX, HaoW-li. Application of modified calcium sulfate whisker in methyl vinyl silicone rubber composites [J]. Polymers & Polymer Composites, 2012, 20(5): 453-462

[12]

WangJ-c, XueY, CangS-jiao. Studies on the application properties of calcium sulfate whisker in silicone rubber composites [J]. Journal of Elastomers & Plastics, 2012, 44(1): 55-66

[13]

FengX, ZhangY, WangG-l, MiaoM, ShiL-yi. Dual-surface modification of calcium sulfate whisker with sodium hexametaphosphate/silica and use as new water-resistant reinforcing fillers in papermaking [J]. Powder Technology, 2015, 271: 1-6

[14]

BaconD J, BarnettD M, ScattergoodR O. Anisotropic continuum theory of lattice defects [J]. Progress in Materials Science, 1978, 23: 51-262

[15]

GurtinM E, MurdochA L. A continuum theory of elastic material surfaces [J]. Archive for Rational Mechanics and Analysis, 1975, 57(4): 291-323

[16]

WangX, JinB, YangL-s, ZhuX-feng. Effect of CuCl2 on hydrothermal crystallization of calcium sulfate whiskers prepared from FGD gypsum [J]. Crystal Research & Technology, 2015, 50(8): 633-640

[17]

MaoX-l, SongX-f, LuG-m, SunY-z, XuY-x, YuJ-guo. Effects of metal ions on crystal morphology and size of calcium sulfate whiskers in aqueous HCl solutions [J]. Industrial & Engineering Chemistry Research, 2014, 53(45): 17625-17635

[18]

HOU Si-chao, XIANG Lan. Influence of activity of CaSO4·2H2O on hydrothermal formation of FeSO4·0.5H2O whiskers [J]. Journal of Nanomaterials, 2013(2013): Article ID 237828.

[19]

HouS-c, WangJ, WangX-x, ChenH-y, XiangLan. Effect of Mg2+ on hydrothermal formation of a-FeSO4·0.5H2O whiskers with high aspect ratios [J]. Langmuir, 2014, 30(32): 9804-9810

[20]

KongB, GuanB-h, YatesM Z, WuZ-biao. Control of a-calcium sulfate hemihydrate morphology using reverse microemulsions [J]. Langmuir, 2012, 28(40): 14137-14142

[21]

ShenZ-x, GuanB-h, FuH-l, YangL-chun. Effect of potassium sodium tartrate and sodium citrate on the preparation of a-calcium sulfate hemihydrate from flue gas desulfurization gypsum in a concentrated electrolyte solution [J]. Journal of the American Ceramic Society, 2009, 92(12): 2894-2899

[22]

PanZ-y, YangG-y, LouY, XueE-x, XuH-z, MiaoX-g, LiuJ-l, HuC-f, HuangQing. Morphology control and self-setting modification of a-calcium sulfate hemihydrate bone cement by addition of ethanol [J]. International Journal of Applied Ceramic Technology, 2013, 10(s1): E219-E225

[23]

SiriwardaneR V, JA PJr, FisherE P, ShenM S, MiltzA L. Decomposition of the sulfates of copper, iron (II), iron (III), nickel, and zinc: XPS, SEM, DRIFTS, XRD, and TGA study [J]. Applied Surface Science, 1999, 152(s34): 219-236

[24]

HayezV, FranquetA, HubinA, TerrynH. XPS study of the atmospheric corrosion of copper alloys of archaeological interest [J]. Surface and Interface Analysis, 2004, 36(8): 876-879

[25]

ComynJ. Practical surface analysis—by Auger and X-ray photoelectron spectroscopy [J]. International Journal of Adhesion and Adhesives, 1984, 4(3): 142

[26]

WeaverJ H, ChaiY, KrollG H, JinC, OhnoT R, HauflerR E, GuoT, AlfordJ M, ConceicaoJ, ChibanteL P F. XPS probes of carbon-caged metals [J]. Chemical Physics Letters, 1992, 1905460-464

[27]

BalliranoP, MarasA, MeloniS, CaminitiR. The monoclinic I2 structure of bassanite, calcium sulphate hemihydrate (FeSO4·0.5H2O) [J]. European Journal of Mineralogy, 2001, 13(5): 985-993

[28]

BezouC, NonatA, MutinJ C, ChristensenA N, LehmannM S. Investigation of the crystal structure of α-CaSO4, CaSO4·0.5H2O, and CaSO4·0.6H2O by powder diffraction methods [J]. Journal of Solid State Chemistry, 1995, 117(1): 165-176

[29]

FreyerD, VoigtW. Crystallization and phase stability of FeSO4 and FeSO4–based salts [J]. Monatshefte Fuer Chemie/chemical Monthly, 2003, 134(5): 693-719

[30]

GuanQ-j, TangH-h, SunW, HuY-h, YinZ-gang. Insight into influence of glycerol on preparing a-FeSO4·½H2O from flue gas desulfurization gypsum in glycerol-water solutions with succinic acid and NaCl [J]. Industrial & Engineering Chemistry Research, 2017, 56: 9831-9838

[31]

WangY, PengY-l, ZhengY-jie. Recovery of magnetite from FeSO4·7H2O waste slag by co-precipitation method with calcium hydroxide as precipitant [J]. Journal of Central South University, 2017, 24(1): 62-70

[32]

HugS J. In situ Fourier transform infrared measurements of sulfate adsorption on hematite in aqueous solutions [J]. Journal of Colloid and Interface Science, 1997, 188(2): 415-422

[33]

PeakD, FordR G, SparksD L. An in situ ATR-FTIR investigation of sulfate bonding mechanisms on goethite [J]. Journal of Colloid and Interface Science, 1999, 218(1): 289-299

[34]

NakamotoKInfrared and Raman spectra of inorganic and coordination compounds [M], 1986, Hoboken, New Jersey, John Wiley & Sons, INC.: 119123

[35]

ColthupN B, DalyL H, WiberleyS EIntroduction to infrared and Raman spectroscopy [M], 2012, San Diego, Academic Press: 375380

AI Summary AI Mindmap
PDF

182

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/