Microstructural evolution of 2026 aluminum alloy during homogenization

Ding-bang Jiang , Qing-lin Pan , Zhi-qi Huang , Quan Hu , Zhi-ming Liu

Journal of Central South University ›› 2018, Vol. 25 ›› Issue (3) : 490 -498.

PDF
Journal of Central South University ›› 2018, Vol. 25 ›› Issue (3) : 490 -498. DOI: 10.1007/s11771-018-3753-4
Article

Microstructural evolution of 2026 aluminum alloy during homogenization

Author information +
History +
PDF

Abstract

The microstructural evolution of 2026 aluminum alloy during homogenization treatment was investigated by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The results show that severe dendritic segregation exists in the as-cast 2026 alloy and the main secondary phases at grain boundary are S (Al2CuMg) and θ (Al2Cu) phases. Elements Cu, Mg and Mn distribute unevenly from grain boundary to the inside of as-cast alloy. With the increase of homogenization temperature or the prolongation of holding time, the residual phases gradually dissolve into the matrix α(Al) and all the elements become more homogenized. According to the results of microstructural evolution, differential scanning calorimetry and X-ray diffraction, the optimum homogenization parameter is at 490 °C for 24 h, which is consistent with the result of homogenization kinetic analysis.

Keywords

2026 aluminum alloy / dendritic segregation / homogenization / microstructure evolution / homogenization kinetics

Cite this article

Download citation ▾
Ding-bang Jiang, Qing-lin Pan, Zhi-qi Huang, Quan Hu, Zhi-ming Liu. Microstructural evolution of 2026 aluminum alloy during homogenization. Journal of Central South University, 2018, 25(3): 490-498 DOI:10.1007/s11771-018-3753-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LiL, LiH-z, LiangX-p, HuangL, HongTao. Flow stress behavior of high-purity Al-Cu-Mg alloy and microstructure evolution [J]. Journal of Central South University, 2015, 22(3): 815-820

[2]

WilliamsJ C, StarkeE A. Progress in structural materials for aerospace systems [J]. Acta Materialia, 2003, 51(19): 5775-5799

[3]

LiuJ Z, YangS S, WangS B, ChenJ H, WuC L. The influence of Cu/Mg atomic ratios on precipitation scenarios and mechanical properties of Al–Cu–Mg alloys [J]. Journal of Alloys & Compounds, 2014, 613(7): 139-142

[4]

StylesM J, HutchinsonC R, ChenY, DeschampsA, BastowT J. The coexistence of two S(Al2CuMg) phases in Al–Cu–Mg alloys [J]. Acta Materialia, 2012, 60(20): 6940-6951

[5]

LiuJ, BrayG H, LukasakD A, PahlR CAluminum alloy extrusions having a substantially unrecrystallized structure, 2005

[6]

LiJ X, ZhaiT, GarrattM D, BrayG H. Fourpoint-bend fatigue of AA 2026 aluminum alloys [J]. Metallurgical & Materials Transactions A, 2005, 36(9): 2529-2539

[7]

LamD F, MenzemerC C, SrivatsanT S. A study to evaluate and understand the response of aluminum alloy 2026 subjected to tensile deformation [J]. Materials & Design, 2010, 31(1): 166-175

[8]

LiuC, ZhangH, JiangF-lin. Characterization of dynamic microstructure evolution during hot deformation of Al–4.10Cu–1.42Mg–0.57Mn–0.12Zr alloy [J]. Transactions of Nonferrous Metals Society of China, 2014, 24(11): 3477-3485

[9]

LiuX-y, PanQ-l, FanX, HeY-b, LiW-b, LiangW-jie. Microstructural evolution of Al–Cu–Mg–Ag alloy during homogenization [J]. Journal of Alloys & Compounds, 2009, 484: 790-794

[10]

CongF-g, ZhaoG, JiangF, TianN, LiR-feng. Effect of homogenization treatment on microstructure and mechanical properties of DC cast 7X50 aluminum alloy [J]. Transactions of Nonferrous Metals Society of China, 2015, 25(4): 1027-1034

[11]

WangH-j, XuJ, KangY-l, TangM-o, ZhangZ-feng. Study on inhomogeneous characteristics and optimize homogenization treatment parameter for large size DC ingots of Al–Zn–Mg–Cu alloys [J]. Journal of Alloys & Compounds, 2014, 585(5): 19-24

[12]

LiB, PanQ-l, ShiY-j, LiC, YinZ-min. Microstructural evolution of Al–Zn–Mg–Zr alloy with trace amount of Sc during homogenization treatment [J]. Transactions of Nonferrous Metals Society of China, 2013, 23(12): 3568-3574

[13]

JiangH-c, YeL-y, ZhangX-m, GuG, ZhangP, WuY-long. Intermetallic phase evolution of 5059 aluminum alloy during homogenization [J]. Transactions of Nonferrous Metals Society of China, 2013, 23(12): 3553-3560

[14]

LiH-y, SuX-j, YinH, HuangD-sheng. Microstructural evolution during homogenization of Al-Cu-Li-Mn-Zr-Ti alloy [J]. Transactions of Nonferrous Metals Society of China, 2013, 23(9): 2543-2550

[15]

ShiY-j, PanQ-l, LiM-j, LiuZ-m, HuangZ-qi. Microstructural evolution during homogenization of DC cast 7085 aluminum alloy [J]. Transactions of Nonferrous Metals Society of China, 2015, 25(11): 3560-3568

[16]

DengY, YinZ-m, CongF-guan. Intermetallic phase evolution of 7050 aluminum alloy during homogenization [J]. Intermetallics, 2012, 26(7): 114-121

[17]

LiuQ, ZhuR-h, LiJ-f, ChenY-l, ZhangX-h, ZhangL, ZhengZ-qiao. Microstructural evolution of Mg, Ag and Zn micro-alloyed Al-Cu-Li alloy during homogenization [J]. Transactions of Nonferrous Metals Society of China, 2016, 26(3): 607-619

[18]

GarrattM D, BrayG H. The grain boundary geometry for optimum resistance to growth of short fatigue cracks in high strength Al-alloys [J]. International Journal of Fatigue, 2005, 27(s10–12): 1202-1209

[19]

ZhangH, ChenR, HuangX-d, ChenJ-hua. Microstructural evolution of 2026 aluminum alloy during hot compression and subsequent heat treatment [J]. Transactions of Nonferrous Metals Society of China, 2011, 21(5): 955-961

[20]

HuangX-d, ZhangH, HanY, WuW-x, ChenJ-hua. Hot deformation behavior of 2026 aluminum alloy during compression at elevated temperature [J]. Materials Science & Engineering A, 2010, 527(3): 485-490

[21]

ZhangJ, HuangY N, MaoC, PengP. Structural, elastic and electronic properties of θ(Al2Cu) and S(Al2CuMg) strengthening precipitates in Al–Cu–Mg series alloys: First-principles calculations [J]. Solid State Communications, 2012, 152(23): 2100-2104

[22]

MondolfoL F. Aluminum alloys: Structure and properties [J]. Materials Science in Semiconductor Processing, 1976, 31(11): 651-657

[23]

ShewmonP GDiffusion in solids [M], 1963, New York, McGraw-Hill: 61

[24]

LiW-b, PanQ-l, XiaoY-p, HeY-b, LiuX-yan. Microstructural evolution of ultra-high strength Al-Zn-Cu-Mg-Zr alloy containing Sc during homogenization [J]. Transactions of Nonferrous Metals Society of China, 2011, 21(10): 2127-2133

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/