Human interaction recognition based on sparse representation of feature covariance matrices
Jun Wang , Si-chao Zhou , Li-min Xia
Journal of Central South University ›› 2018, Vol. 25 ›› Issue (2) : 304 -314.
Human interaction recognition based on sparse representation of feature covariance matrices
A new method for interaction recognition based on sparse representation of feature covariance matrices was presented. Firstly, the dense trajectories (DT) extracted from the video were clustered into different groups to eliminate the irrelevant trajectories, which could greatly reduce the noise influence on feature extraction. Then, the trajectory tunnels were characterized by means of feature covariance matrices. In this way, the discriminative descriptors could be extracted, which was also an effective solution to the problem that the description of the feature second-order statistics is insufficient. After that, an over-complete dictionary was learned with the descriptors and all the descriptors were encoded using sparse coding (SC). Classification was achieved using multiple instance learning (MIL), which was more suitable for complex environments. The proposed method was tested and evaluated on the WEB Interaction dataset and the UT interaction dataset. The experimental results demonstrated the superior efficiency.
interaction recognition / dense trajectory / sparse coding / MIL
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
/
| 〈 |
|
〉 |