Asymmetric Green’s functions for exponentially graded transversely isotropic substrate–coating system

F. Akbari , A. Khojasteh , M. Rahimian

Journal of Central South University ›› 2018, Vol. 25 ›› Issue (1) : 169 -184.

PDF
Journal of Central South University ›› 2018, Vol. 25 ›› Issue (1) : 169 -184. DOI: 10.1007/s11771-018-3727-6
Article

Asymmetric Green’s functions for exponentially graded transversely isotropic substrate–coating system

Author information +
History +
PDF

Abstract

By virtue of a complete set of two displacement potentials, an analytical derivation of the elastostatic Green’s functions of an exponentially graded transversely isotropic substrate–coating system is presented. Three-dimensional point–load and patch–load Green’s functions for stresses and displacements are given in line-integral representations. The formulation includes a complete set of transformed stress–potential and displacement–potential relations, with utilizing Fourier series and Hankel transforms. As illustrations, the present Green’s functions are degenerated to the special cases such as an exponentially graded half-space and a homogeneous two-layered half-space Green’s functions. Because of complicated integrand functions, the integrals are evaluated numerically and for numerical computation of the integrals, a robust and effective methodology is laid out which gives the necessary account of the presence of singularities of integration. Comparisons of the existing numerical solutions for homogeneous two-layered isotropic and transversely isotropic half-spaces are made to confirm the accuracy of the present solutions. Some typical numerical examples are also given to show the general features of the exponentially graded two-layered half-space Green’s functions that the effect of degree of variation of material properties will be recognized.

Keywords

functionally graded material / transversely isotropic / bi-material / Green’s function / coating-substrate / displacement potential

Cite this article

Download citation ▾
F. Akbari, A. Khojasteh, M. Rahimian. Asymmetric Green’s functions for exponentially graded transversely isotropic substrate–coating system. Journal of Central South University, 2018, 25(1): 169-184 DOI:10.1007/s11771-018-3727-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SburlatiR. Elastic solutions in a functionally graded coating subjected to a concentrated force [J]. Journal of Mechanics of Materials and Structures, 2012, 7: 401-412

[2]

EskandariM, ShodjaH M. Green’s functions of an exponentially graded transversely isotropic half-space [J]. International Journal of Solids and Structures, 2010, 47: 1537-1545

[3]

KiebackB, NeubrandA, RiedelH. Processing techniques for functionally graded materials [J]. Materials Science and Engineering A, 2003, 362: 81-105

[4]

SobczakJ, DrenchevL. Metallic functionally graded materials: A specific class of advanced composites [J]. Journal of Materials Science and Technology, 2013, 29(4): 297-316

[5]

ChoJ, OdenJ. Functionally graded material: a parametric study on thermal stress characteristics using the Crank-Nicolson-Galerkin scheme [J]. Computer Methods in Applied Mechanics and Engineering, 2000, 188: 17-38

[6]

HoriM, Nemat-NasserS. On two micromechanics theories for determining micromacro relations in heterogeneous solids [J]. Mechanics of Materials, 1999, 31: 667-682

[7]

RahmanS, ChakrabortyA. A stochastic micromechanical model for elastic properties of functionally graded materials [J]. Mechanics of Materials, 2007, 39: 548-563

[8]

BirmanV, ByrdL W. Modeling and analysis of functionally graded materials and structures [J]. Applied Mechanics Reviews, ASME, 2007, 60(5): 195-216

[9]

MartinP A, RichardsonJ D, GrayL J, BergerJ R. On Green’s function for a three-dimensional exponentially graded elastic solid [J]. Proceeding of the Royal Society of London, Series A, 2002, 458: 1931-1947

[10]

WangC D, PanE, TzengC S, HanF, LiaoJ J. Displacements and stresses due to a uniform vertical circular load in an inhomogeneous cross-anisotropic half-space [J]. International Journal of Geomechanic, 2006, 6(1): 110

[11]

ChanY S, GreyL J, KaplanT, PaulinoG H. Green’s function for a two-dimensional exponentially graded elastic medium [J]. Proceefings of the Royal Society of London, Series A, 2004, 460: 1689-1706

[12]

KashtalyanM, RushchitskyJ J. Revisiting displacement functions in threedimensional elasticity of inhomogeneous media [J]. International Journal of Solids and Structures, 2009, 463463-3470

[13]

SallahO M, GrayL J, AmerM A, MatbulyM S. Green’s function expantion for exponentially graded elasticity [J]. International Journal for Numerical Method in Engineering, 2010, 82: 756-772

[14]

Eskandari-GhadiM, Amiri-HezavehA. Wave propagations in exponentially graded transversely isotropic half-space with potential function method [J]. Mechanics of Materials, 2014, 68: 275-292

[15]

KatebiA, SelvaduraiA P S. Undrained behaviour of a non-homogeneous elastic medium: the influence of variations in the elastic shear modulus with depth [J]. Geotechnique, 2013, 63(13): 1159-1169

[16]

NingX, LovellM, SlaughterW S. Asymptotic solutions for axisymmetric contact of thin, transversely isotropic elastic layer [J]. Wear, 2006, 260: 693-698

[17]

RahmanM, NewazG. Boussinesq type solution for a transversely isotropic half-space coated with a thin film [J]. International Journal of Engineering Science, 2000, 38: 807-822

[18]

ShodjaH M, EskandariM. Axisymmetric time-harmonic response of a transversely isotropic substrate–coating system [J]. International Journal of Engineering Science, 2007, 45: 272-287

[19]

KhojastehA, RahimianM, PakR Y S, EskadariM. Asymmetric dynamic Green’s functions in a two-layered transversely isotropic half-space [J]. International Journal of Engineering science, ASCE, 2008, 134(9): 777-787

[20]

KhojastehA, RahimianM, PakR Y S. Three-dimensional dynamic Green’s functions in transversely isotropic bi-materials [J]. International Journal of Solids and Structures, 2008, 45: 4952-4972

[21]

KhojastehA, RahimianM, EskandariM. Threedimensional dynamic Green’s functions in transversely isotropic tri-materials [J]. Applied Mathematical Modelling, 2013, 37: 3164-3180

[22]

PanE, YangB. Three-dimensional interfacial Green’s functions in anisotropic bimaterials [J]. Applied Mathematical Modeling, 2003, 27: 307-326

[23]

Eskandari-GhadiM, PakR Y S, ArdeshirbehrestaghiA. Transversely isotropic elastodynamic solution of a finite layer on an infinite subgrade under surface loads [J]. Soil Dynamics and Earthquake Engineering, 2008, 28: 986-1003

[24]

KhojastehA, RahimianM, EskandariM, PakR Y S. Three-dimensional dynamic Green’s functions for a multilayered transversely isotropic half-space [J]. International Journal of Solids and Structures, 2011, 48: 1349-1361

[25]

EskandariM, AhmadiS F. Green’s function of a surface-stiffened transversely isotropic half-space [J]. International Journal of Solids and Structures, 2012, 49: 3282-3290

[26]

RahimianM, Eskandari-GhadiM, PakR Y S, KhojastehA. Elastodynamic potential method for transversely isotropic solid [J]. Journal of Engineering Mechanics, ASCE, 2007, 133(10): 1134-1145

[27]

LekhnitskiiS GTheory of elasticity of an anisotropic elastic body [M], 1963, San Francisco, Holden Day

[28]

SneddonI NFourier transforms [M], 1951, New York, Mcgraw-Hill

[29]

SneddonI NThe use of integral transforms [M], 1972, New York, Mcgraw-Hill

[30]

ApselR J, LucoJ E. On the Green’s functions for a layered half space [J]. Part II. Bulletin of the Seismological Society of America, 1983, 73(4): 931-951

[31]

PakR Y S, GuzinaB B. Three-dimensional Green’s functions for a multi-layered half-space displacement potentials [J]. Journal of Engineering Mechanics, ASCE, 2002, 128(4): 449-461

[32]

RajapakseR K N D, WangY. Green’s functions for transversely isotropic elastic half-space [J]. Journal of Engineering Mechanics, ASCE, 1993, 119(9): 1724-1746

[33]

SelvaduraiA P S, KatebiA. Mindlin’s problem for an incompressible elastic half-space with an exponential variation in the linear elastic shear modulus [J]. International Journal of Engineering Science, 2013, 65: 9-21

[34]

PoulosH G, DavisE HElastic solutions for soil and rock mechanics [M], 1974, New York, Wiley

[35]

PanE. Static response of a transversely isotropic and layered half-space to general surface loads [J]. Physics of the Earth and Planetary Interiors, 1989, 54: 353-363

AI Summary AI Mindmap
PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/