A supervised multimanifold method with locality preserving for face recognition using single sample per person
Nabipour Mehrasa , Aghagolzadeh Ali , Motameni Homayun
Journal of Central South University ›› 2018, Vol. 24 ›› Issue (12) : 2853 -2861.
A supervised multimanifold method with locality preserving for face recognition using single sample per person
Although real-world experiences show that preparing one image per person is more convenient, most of the appearance-based face recognition methods degrade or fail to work if there is only a single sample per person (SSPP). In this work, we introduce a novel supervised learning method called supervised locality preserving multimanifold (SLPMM) for face recognition with SSPP. In SLPMM, two graphs: within-manifold graph and between-manifold graph are made to represent the information inside every manifold and the information among different manifolds, respectively. SLPMM simultaneously maximizes the between-manifold scatter and minimizes the within-manifold scatter which leads to discriminant space by adopting locality preserving projection (LPP) concept. Experimental results on two widely used face databases FERET and AR face database are presented to prove the efficacy of the proposed approach.
face recognition / locality preserving / manifold learning / single sample per person
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
/
| 〈 |
|
〉 |