Fuel combustion synthesis and upconversion properties of Yb3+ and Er3+ dual-doped ZrO2 nanocrystals

Xiao-lin Liu , Ning Zhang , Dan Li , Zhi-cheng Li , Wei-xiong You , Qian Zhang , Li-bin Xia , Bin Yang

Journal of Central South University ›› 2017, Vol. 24 ›› Issue (10) : 2209 -2214.

PDF
Journal of Central South University ›› 2017, Vol. 24 ›› Issue (10) : 2209 -2214. DOI: 10.1007/s11771-017-3629-z
Article

Fuel combustion synthesis and upconversion properties of Yb3+ and Er3+ dual-doped ZrO2 nanocrystals

Author information +
History +
PDF

Abstract

Ytterbia and erbia dual-doped zirconia (ZrO2: Yb3+, Er3+) nanophosphors were successfully synthesized by high-temperature fuel combustion at 1000 °C for 2 h. The effects of dopant concentration on the structure and upconversion properties were investigated by X-ray diffraction, transmission electron microscopy and photoluminescence, respectively. XRD patterns indicate that the main phase of products belongs to cubic ZrO2 fluorite-type structure. TEM results show that different fuels have great influence on the morphologies of dual-doped ZrO2 samples. Under 980 nm excitation, the glycine-calcined nanophosphors show high stimulated luminescence and doped-ion concentration-depended intensities. The intensely red upconversion emissions are attributed to the fact that the dual-doped Yb3+ and Er3+ ions result in the non-radiative relaxation, energy migration, and cross relaxation.

Keywords

nanostructure / luminescence / upconversion / zirconia

Cite this article

Download citation ▾
Xiao-lin Liu, Ning Zhang, Dan Li, Zhi-cheng Li, Wei-xiong You, Qian Zhang, Li-bin Xia, Bin Yang. Fuel combustion synthesis and upconversion properties of Yb3+ and Er3+ dual-doped ZrO2 nanocrystals. Journal of Central South University, 2017, 24(10): 2209-2214 DOI:10.1007/s11771-017-3629-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ZhouJ, XiaZ-guo. Luminescence properties and energy transfer studies of a color tunable BaY2Si3O: Tm3+, Dy3+ phosphor [J]. Optical Materials, 2016, 53: 116-122

[2]

ChenA-m, WangJ, BoY-y, LiuR, GuP, PanZ-fa. Synthesis, characterization and photoluminescence properties of hierarchical Mg3B2O6: Eu3+ flower-like microspheres [J]. Chinese Journal of Inorganic Chemistry, 2015, 31: 1548-1554

[3]

WuS-l, LiuY, ChangJ, NingY-h, ZhangS-fen. Beta-NaYF4: Yb3+, Er3+ upconversion microcrystals with both high emission intensity and controlled morphology [J]. Laser & Photonics Reviews, 2014, 8: 575-582

[4]

GuY-y, LiL-k, ZhangW-w, LiuY, LuZ-guang. Precipitation processes and luminescence properties of ZnO: La3+, Li+ nanoparticles [J]. Journal of Central South University, 2013, 20(2): 332-336

[5]

AISAKA T, FUJII M, HAYASHI S. Enhancement of upconversion luminescence of Er doped Al2O3 films by Ag island films [J]. Applied Physics Letters, 2008, 92: Art. No. 132105.

[6]

VetroneF, BoyerJ C, CapobiancoJ A, SpeghiniA, BettinelliM. Effect of Yb3+ codoping on the upconversion emission in nanocrystalline Y2O3:Er3+ [J]. Journal of Physical Chemistry B, 2003, 107: 1107-1112

[7]

VetroneF, NaccacheR d L, FuenteA J, Sanz-RodriguezF, Blazquez-CastroA, RodriguezE M, JaqueD, SoleJ G, CapobiancoJ A. Intracellular imaging of HeLa cells by non-functionalized NaYF4:Er3+,Yb3+ upconverting nanoparticles [J]. Nanoscale, 2010, 2: 495-498

[8]

MahalingamV, MangiariniF, VetroneF, VenkatramuV, BettinelliM, SpeghiniA, SpeghiniJ A. Bright white upconversion emission from Tm3+/Yb3+/Er3+ doped Lu3Ga5O12 nanocrystals [J]. Journal of Physical Chemistry C, 2008, 112: 17745-17749

[9]

ImaniehM H, MartinI R, NadarajahA, LawrenceJ G, LavinV, Gonzalez-PlatasJ. Upconversion emission of a novel glass ceramic containing Er3+, Yb3+: Sr1–xYxF2, nanocrystals [J]. Journal of Luminescence, 2016, 172: 201-207

[10]

Urbina-FriasA, Lopez-LukeT, OlivaJ, SalasP, Torres-CastroA, DE LA RosaE. Strong enhancement of the upconversion emission in ZrO2: Yb3+, Er3+, Gd3+ nanocubes synthesized with Na2S [J]. Journal of Luminescence, 2016, 172: 154-160

[11]

YouW-x, HuangY-d, ChenY-j, LinY-f, LuoZ-du. The Yb3+ to Er3+ energy transfer in YAl3(BO3)4 crystal [J]. Optics Communications, 2008, 281: 4936-4939

[12]

YouW-x, LaiF-q, JiangH-h, LiaoJ-sheng. The up-conversion properties of Yb3+ and Er3+ doped Y4Al2O9 [J]. Physica B—Condensed Matter, 2012, 407: 1094-1098

[13]

CantelarE, MunozJ A, Sanz-GariciaJ A, CussoF. Yb3+ to Er3+ energy transfer in LiNbO3 [J]. Journal of Physics: Condensed Matter, 1998, 10: 8893-8903

[14]

DA VilaL D, GomesL, TarelhoL V G, RibeiroS J L, MesadeqY. Mechanism of the Yb-Er energy transfer in fluorozirconate glass [J]. Journal of Applied Physics, 2003, 93: 3873-3880

[15]

KRSMANOVIC R, MOROZOV V A, LEBEDEV O I, POLIZZI S, SPEGHINI A, BETTINELLI M, TENDELOO G V. Structural and luminescence investigation on gadolinium gallium garnet nanocrystalline powders prepared by solution combustion synthesis [J]. Nanotechnology, 2007, 18: Art. No. 325604.

[16]

FeiB-j, ChenW-d, GuoW, ShiM, LinH-f, HuangQ-f, ZhangG, CaoY-ge. Optical properties and laser oscillation of Yb3+, Er3+ co-doped Y3Al5O12 transparent ceramics [J]. Journal of Alloys and Compounds, 2015, 636: 171-175

[17]

ZhengK-z, SongW-y, LvC-j, LiuZ-y, QinW-ping. Controllable synthesis and size-dependent upconversion luminescence properties of Lu2O3: Yb3+/Er3+ nanospheres [J]. CrystEngComm, 2014, 16: 4329-4337

[18]

FENG Wei, WANG Xiang-fu, MENG Lan, YAN Xiao-hong. Fabrication and photoelectric properties of Er3+ and Yb3+ co-doped ZnO films [J]. Japanese Journal of Applied Physics, 2016, 55: Art. No. 012302.

[19]

SOLIS D, DE LA ROSA E, MEZA O, DISZ-TORRES L A, SALAS P, ANGELES-CHAVEZ C. Role of Yb3+ and Er3+ concentration on the tunability of green-yellow-red upconversion emission of codped ZrO2:Yb3+-Er3+ nanocrystals [J]. Journal of Applied Physics, 2010, 108: Art. No. 023103.

[20]

DingJ-f, LiX-m, CuiL-l, CaoC, WangH-h, CaoJian. Electronic and optical properties of anion-doped c-ZrO2 from first-principles calculations [J]. Journal of Central South University, 2014, 21(7): 2584-2589

[21]

PatraA, FriendC S, KapoorR, PrasadP N. Upconversion in Er3+: ZrO2 nanocrystals [J]. The Journal of Physical Chemistry B, 2002, 106: 1909-1912

[22]

Diaz-TorresL A, MezaO, SolisD, SalasP, DE LA RosaE. Visible upconversion emission and non-radiative direct Yb3+ to Er3+ energy transfer processes in nanocrystalline ZrO2:Yb3+, Er3+ [J]. Optics and Lasers in Engineering, 2011, 49: 703-708

[23]

ParkY I, NamS H, KimJ H, BaeY M, YooB, KimH M, JeonK S, ParkH S, ChoiJ S, LeeK T, SuhY D, HyeonT. Comparative study of upconverting nanoparticles with various crystal structures, core/shell structures, and surface characteristics [J]. The Journal of Physical Chemistry C, 2013, 117: 2239-2244

AI Summary AI Mindmap
PDF

102

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/