Spatiotemporal distribution model for zinc electrowinning process and its parameter estimation

Shi-jun Deng , Chun-hua Yang , Yong-gang Li , Hong-qiu Zhu , Tie-bin Wu

Journal of Central South University ›› 2017, Vol. 24 ›› Issue (9) : 1968 -1976.

PDF
Journal of Central South University ›› 2017, Vol. 24 ›› Issue (9) : 1968 -1976. DOI: 10.1007/s11771-017-3605-7
Article

Spatiotemporal distribution model for zinc electrowinning process and its parameter estimation

Author information +
History +
PDF

Abstract

This paper focuses on the distributed parameter modeling of the zinc electrowinning process (ZEWP) to reveal the spatiotemporal distribution of concentration of zinc ions (CZI) and sulfuric acid (CSA) in the electrolyte. Considering the inverse diffusion of such ions in the electrolyte, the dynamic distribution of ions is described by the axial dispersion model. A parameter estimation strategy based on orthogonal approximation has been proposed to estimate the unknown parameters in the process model. Different industrial data sets are used to test the effectiveness of the spatiotemporal distribution model and the proposed parameter estimation approach. The results demonstrate that the analytical model can effectively capture the trends of the electrolysis reaction in time and thus has the potential to implement further optimization and control in the ZEWP.

Keywords

zinc electrowinning / spatiotemporal distribution model / parameter estimation / orthogonal approximation

Cite this article

Download citation ▾
Shi-jun Deng, Chun-hua Yang, Yong-gang Li, Hong-qiu Zhu, Tie-bin Wu. Spatiotemporal distribution model for zinc electrowinning process and its parameter estimation. Journal of Central South University, 2017, 24(9): 1968-1976 DOI:10.1007/s11771-017-3605-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ZhangB, YangC-h, ZhuH-q, LiY-g, GuiW-hua. Kinetic modeling and parameter estimation for competing reactions in copper removal process from zinc sulfate solution [J]. Industrial & Engineering Chemistry Research, 2013, 52(48): 17074-17086

[2]

SunB, GuiW-h, WuT-b, WangY-l, YangC-hua. An integrated prediction model of cobalt ion concentration based on oxidation–reduction potential [J]. Hydrometallurgy, 2013, 140: 102-110

[3]

HerreroD, AriasP L, GÜEMEZB, BarrioV L, CambraJ F, RequiesJ. Hydrometallurgical process development for the production of a zinc sulphate liquor suitable for electrowinning [J]. Mineral Engineering, 2010, 23(6): 511-517

[4]

BartonG W, ScottA C. Scale-up effects in modelling a full-size zinc electrowinning cell [J]. Journal of Applied Electrochemistry, 1992, 22(8): 687-692

[5]

MahonM, PengS, AlfantaziA. Application and optimization studies of a zinc electrowinning process simulation [J]. Canadian Journal of Chemical Engineering, 2014, 92: 633-642

[6]

WangY-l, GuiW-h, YangC-h, HuangT-song. Intelligent modeling and optimization on time-sharing power dispatching system for electrolytic zinc process [J]. Transactions of Nonferrous Metals Society of China, 2000, 10(4): 561-565

[7]

BahramB, JavadM. Statistical evaluation and optimization of zinc electrolyte hot purification process by Taguchi method [J]. Journal of Central South University, 2015, 22(6): 2066-2072

[8]

YangC-h, DeconinckG, GuiW-h, LiY-gang. An optimal power-dispatching system using neural networks for the electrochemical process of zinc depending on varying prices of electricity [J]. IEEE Transactions on Neural Network, 2002, 13(1): 229-236

[9]

BartonG W, ScottA C. Industrial applications of a mathematical model for the zinc electrowinning process [J]. Journal of Applied Electrochemistry, 1994, 24(5): 377-383

[10]

MahonM, WasikL, AlfantaziA. Development and implementation of a zinc electrowinning process simulation [J]. Journal of Applied Electrochemistry, 2012, 159(8): D486-D492

[11]

ZhangQ-b, HuaY-x, DongT-g, ZhouD-gui. Effects of temperature and current density on zinc electrodeposition from acidic sulfate electrolyte with H2SO4 as additive [J]. Journal of Applied Electrochemistry, 2009, 39(8): 1207-1216

[12]

GuiW-h, YangC-h, ChenX-f, WangY-lin. Modeling and optimization problems and challenges arising in nonferrous metallurgical processes [J]. Acta Automatic Sinica, 2013, 39(3): 197-207

[13]

DengS-j, YangC-h, LiY-g, ZhuH-qiu. On-line prediction model for concentrations of zinc ion and sulfuric acid in zinc electrowinning process [J]. Chinese Journal of Chemical Engineering, 2015, 66(7): 2588-2594

[14]

GuiW-h, ZhangM-j, YangC-h, LiY-gang. Energy consumption optimization of zinc electrolysis process based on hybrid particle swarm algorithm [J]. Control Engineering of China, 2009, 16(6): 748-751

[15]

ChartonS, DuhametJ, BordaG, OdeD. Axial dispersion in pulsed disk and doughnut columns: A unified law [J]. Chemical Engineering Science, 2012, 75(0): 468-477

[16]

LiH-x, QiC-kun. Modeling of distributed parameter systems for applications-A synthesized review from time-space separation [J]. Journal of Process Control, 2010, 20(8): 891-901

[17]

BonisI, XieW-g, TheodoropoulosC. Multiple model predictive control of dissipative pde systems [J]. IEEE Transactions on Control Systems Technology, 2014, 22(3): 1206-1214

[18]

XiangX-q, ZhouJ-z, LiM, LuoZ-m, LiC-shun. Improved algorithm about NSFOT [J]. Applied Mathematics & Computation, 2009, 215(3): 881-888

[19]

StankovicA M, Lev-AriH, PerisicM M. Analysis and implementation of model-based linear estimation of dynamic phasors [J]. IEEE Transactions on Power System, 2004, 19(4): 1903-1910

[20]

AbbasbandyS, KazemS, AlhuthaliM S, AlsulamiH H. Application of the operational matrix of fractional-order Legendre functions for solving the time-fractional convection–diffusion equation [J]. Applied Mathematics & Computation, 2015, 266: 31-40

[21]

LepikU. Solving fractional integral equations by the Haar wavelet method [J]. Applied Mathematics & Computation, 2009, 214(2): 468-478

[22]

LiY-l, SunNing. Numerical solution of fractional differential equations using the generalized block pulse operational matrix [J]. Computers & Mathematics with Applications, 2011, 62(3): 1046-1054

[23]

MaleknejadL, SohrabiS, BarajiB. Application of 2D-BPFs to nonlinear integral equations [J]. Communications in Nonlinear Science & Numerical Simulation, 2010, 15(3): 527-535

[24]

YuS-y, CaoY-b, ZhouXuan. Parameter identification for vertical quench furnace control system based on orthogonal function [J]. Control Engineering of China, 2009, 16(3): 251-253

[25]

PanJ-l, WenY-h, ChengJ, PanJ-q, BaiZ-l, YangY-sheng. Zinc deposition and dissolution in sulfuric acid onto a graphite-resin composite electrode as the negative electrode reactions in acidic zinc-based redox flow batteris [J]. Journal of Applied Electrochemistry, 2013, 43: 541-551

[26]

YuJ-x, YangH-x, AiX-p, ChenY-yan. Effect of anions on the zinc electrodeposition onto glassy-carbon electrode [J]. Russian Journal of Electrochemistry, 2002, 38(3): 321-325

[27]

SungB K, LeeY. Diffusion of sulfuric acid within lignocellulosic biomass particles and its impact on dilute-acid pretreatment [J]. Bioresource Technology, 2002, 83(2): 165-171

[28]

LiY-g, GuiW-h, TeoK L, ZhuH-q, ChaiQ-qin. Optimal control for zinc solution purification based on interacting CSTR models [J]. Journal of Process Control, 2012, 22(10): 1878-1889

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/