A hybrid zeolitic imidazolate framework Co-IM-mIM membrane for gas separation

Zheng-cai Gao , Li-qing Li , Hai-long Li , Ruo-fei Chen , S. Wang , Yang-gang Wang

Journal of Central South University ›› 2017, Vol. 24 ›› Issue (8) : 1727 -1735.

PDF
Journal of Central South University ›› 2017, Vol. 24 ›› Issue (8) : 1727 -1735. DOI: 10.1007/s11771-017-3580-z
Article

A hybrid zeolitic imidazolate framework Co-IM-mIM membrane for gas separation

Author information +
History +
PDF

Abstract

A zeolitic imidazolate hybrid membrane (Co-IM-mIM) containing two imidazolate ligands deposited on a macroporous α-alumina support was prepared by pre-depositing and secondary growth technique. XRD, TGA and SEM characterizations demonstrate that a stable and thin, but dense and pure-phase Co-IM-mIM membrane can be obtained on the macroporous-alumina discs in Teflon-lined autoclave at 120 °C after pre-depositing by dip-coating at room temperature. No visible cracks, pinholes or other defects were observed on the membrane layer. The gas separation studies of Co-IM-mIM membrane were carried out at 25 °C and 1×105 Pa, showing ideal selectivity of 6.95, 5.25, 3.40 for H2/CO2, H2/N2 and H2/CH4, respectively, and a permeance of 17.37× 10−6 mol/(m2·s·Pa) for H2. The influence of temperature and trans-membrane pressure on hydrogen separation and permeation was also carried out. The gas permeation and selectivity demonstrate that this membrane may have potential applications for efficient H2 separation.

Keywords

Co-IM-mIM membrane / secondary growth / gas permeation / separation

Cite this article

Download citation ▾
Zheng-cai Gao, Li-qing Li, Hai-long Li, Ruo-fei Chen, S. Wang, Yang-gang Wang. A hybrid zeolitic imidazolate framework Co-IM-mIM membrane for gas separation. Journal of Central South University, 2017, 24(8): 1727-1735 DOI:10.1007/s11771-017-3580-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LiJ-r, KupplerR J, ZhouH-cai. Selective gas adsorption and separation in metal–organic frameworks [J]. Chemical Society Reviews, 2009, 38: 1477-1504

[2]

YaghiO M, O’KeeffeM, OckwigN W, ChaeH K, EddaoudiM, KimJ. Reticular synthesis and the design of new materials [J]. Nature, 2003, 423: 705-714

[3]

JiangL-l, WangX-y, WuH, WuC, ZhaoQ-l, SongY-feng. Effect of carbonization temperature on structure and electrochemical performance of porous carbon from metal framework [J]. Journal of Central South University: Science and Technology, 2013, 44(10): 4012-4018

[4]

YuanC-f, LiuJ, HanP-f, XuJ-y, LiJie. Li-transfer promotion and interface stabilization of MOF-5 on PEO-based polymer electrolyte [J]. Journal of Central South University: Science and Technology, 2015, 46(4): 1189-1196

[5]

HuangA-s, DouW, CaroJ. Steam-stable zeolitic imidazolate framework ZIF-90 membrane with hydrogen selectivity through covalent functionalization [J]. Journal of the American Chemical Society, 2010, 132: 15562-15564

[6]

LtyA, YeungK L. An investigation of the relationship between microstructure and permeation properties of ZSM-5 membranes [J]. Journal of Membrane Science, 2001, 194: 33-55

[7]

LinL-g, ZhangL-h, ZhangC, DongM-m, LiuC-y, WangA-d, ChuY-j, ZhangY-z, CaoZ-ping. Membrane adsorber with metal organic frameworks for sulphur removal [J]. Rsc Advances, 2013, 3: 9889-9896

[8]

NunesS, PeinemannK. 1.06 advanced polymeric and organic–inorganic membranes for pressure-driven processes [J]. Comprehensive Membrane Science and Engineering, 2010, 2017: 113-129

[9]

YooY, LaiZ, JeongH K. Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth [J]. Microporous & Mesoporous Materials, 2009, 123: 100-106

[10]

ZhaoZ-x, MaX-l, KasikA, LiZ, LinY S. Gas separation properties of metal organic framework (MOF-5) membranes [J]. Industrial & Engineering Chemistry Research, 2012, 52: 1102-1108

[11]

PhanA, DoonanC J, Uribe-RomoF J, KnoblerC B, O’KeeffeM, YaghiO M. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks [J]. Acc Chem Res, 2010, 43: 58-67

[12]

BanerjeeR, PhanA, WangB, KnoblerC, FurukawaH O, KeeffeM, YaghiO M. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture [J]. Science, 2008, 319: 939-943

[13]

ParkK S, NiZ, CôtéA P, ChoiJ Y, HuangR, Uribe-RomoF J, ChaeH K, O’KeeffeM, YaghiO M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks [J]. Proceedings of the National Academy of Sciences, 2006, 103: 10186-10191

[14]

LiY-s, LiangF-y, BuxH, YangW-s, CaroJ. Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation [J]. Journal of Membrane Science, 2010, 354: 48-54

[15]

LiuY-y, ZengG-f, PanY-c, LaiZ-ping. Synthesis of highly c-oriented ZIF-69 membranes by secondary growth and their gas permeation properties [J]. Journal of Membrane Science, 2011, 379: 46-51

[16]

LiS L. CO2 and CH4 permeation through zeolitic imidazolate framework (ZIF)-8 membrane synthesized via in situ layer-by-layer growth: An experimental and modeling study [J]. Rsc Advances, 2015, 5: 79098-79106

[17]

HertG L, BuxH, CaroJ, ChmelikC, RemsungnenT, KnauthM, FritzscheS. Diffusion of CH4 and H2 in ZIF-8 [J]. Journal of Membrane Science, 2011, 377: 36-41

[18]

LiL-x, YaoJ-f, ChenR-z, HeL, WangK, WangH-ting. Infiltration of precursors into a porous alumina support for ZIF-8 membrane synthesis [J]. Microporous and Mesoporous Materials, 2013, 168: 15-18

[19]

PanY-c, WangB, LaiZ-ping. Synthesis of ceramic hollow fiber supported zeolitic imidazolate framework-8 (ZIF-8) membranes with high hydrogen permeability [J]. Journal of Membrane Science, 2012, 421: 292-298

[20]

BurrowsA D. Mixed-component metal–organic frameworks (MC-MOFs): Enhancing functionality through solid solution formation and surface modifications [J]. Cryst Eng Comm, 2011, 13: 3623-3642

[21]

ThompsonJ A, BladC R, BrunelliN A, LydonM E, LivelyR P, JonesC W, NairS. Hybrid zeolitic imidazolate frameworks: Controlling framework porosity and functionality by mixed-linker synthesis [J]. Chemistry of Materials, 2012, 24: 1930-1936

[22]

KahrJ, MowatJ P, SlawinA M, MorrisR E, FairenjimenezD, WrightP A. Synthetic control of framework zinc purinate crystallisation and properties of a large pore, decorated, mixed-linker RHO-type ZIF [J]. Chemical Communications, 2012, 48: 6690-6692

[23]

ShahM, MccarthyM C, SachdevaS, LeeA K, JeongH K. Current status of metal–organic framework membranes for gas separations: Promises and challenges [J]. Industrial & Engineering Chemistry Research, 2012, 51: 2179-2199

[24]

QiuS-l, XueM, ZhuG-shan. Metal–organic framework membranes: from synthesis to separation application [J]. Chemical Society Reviews, 2014, 43: 6116-6140

[25]

ShahM, MccarthyM C, SachdevaS, LeeA K, JeongH K. Current status of metal–organic framework membranes for gas separations: Promises and challenges [J]. Industrial & Engineering Chemistry Research, 2012, 51: 2179-2199

[26]

TancoM A L, TanakaD A P, RodriguesS C, TexeiraM, MendesA. Composite-alumina-carbon molecular sieve membranes prepared from novolac resin and boehmite. Part I: Preparation, characterization and gas permeation studies [J]. International Journal of Hydrogen Energy, 2015, 40: 5653-5663

[27]

CaoF, ZhangC-j, XiaoY-l, HuangH-l, ZhangW-j, LiuD-h, ZhongC-l, YangQ-y, YangZ-h, LuX-hua. Helium recovery by a Cu-BTC metal–organic-framework membrane [J]. Industrial & Engineering Chemistry Research, 2012, 51: 11274-11278

[28]

LiuY-y, HuE-p, KhanE A, LaiZ-ping. Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture [J]. Journal of Membrane Science, 2010, 353: 36-40

[29]

HuangA-s, LiuQ, WangN-y, CaroJ. Organosilica functionalized zeolitic imidazolate framework ZIF-90 membrane for CO2/CH4 separation [J]. Microporous & Mesoporous Materials, 2014, 192: 18-22

[30]

GeL, ZhouW, DuA-j, ZhuZ-hua. Porous polyethersulfone-supported zeolitic imidazolate framework membranes for hydrogen separation [J]. Journal of Physical Chemistry C: Nanomaterials Interfaces & Hard Matter, 2012, 116: 13264-13270

[31]

TaoK, CaoL-j, LinY-c, KongC-l, ChenLiang. A hollow ceramic fiber supported ZIF-8 membrane with enhanced gas separation performance prepared by hot dip-coating seeding [J]. Journal of Materials Chemistry, 2013, 268: 13046-13049

[32]

LiuY, WangN-y, LisaD, FrankS, JürgenC J. MOF membrane synthesis in the Confined space of a vertically aligned LDH network [J]. Chemical communications, 2014, 50: 4225-4227

[33]

LeeD J, LiQ-m, KimH, LeeK. Preparation of Ni-MOF-74 membrane for CO2 separation by layer-by-layer seeding technique [J]. Microporous & Mesoporous Materials, 2012, 163: 169-177

[34]

WangN-y, MundstockA, LiuY, HuangA-s, CaroJ. Amine-modified Mg-MOF-74/CPO-27-Mg membrane with enhanced H2/CO2 separation [J]. Chemical Engineering Science, 2015, 124: 27-36

[35]

ZhouS-y, ZouX-q, SunF-x, RenH, LiuJ, ZhangF, ZhaoN, ZhuG-shan. Development of hydrogen-selective CAU-1 MOF membranes for hydrogen purification by ‘dual-metal-source’ approach [J]. International Journal of Hydrogen Energy, 2013, 38: 5338-5347

[36]

NagarajuD, BhagatD G, BanerjeeR, KharulU K. In situ growth of metal-organic frameworks on a porous ultrafiltration membrane for gas separation [J]. J Mater Chem A, 2013, 1: 8828-8835

[37]

HuangK, LiuS-n, LiQ-q, JinW-qin. Preparation of novel metal-carboxylate system MOF membrane for gas separation [J]. Separation & Purification Technology, 2013, 119: 94-101

[38]

BuxH, ChmelikC, van BatenJ M, KrishnaR, CaroJ. Novel MOF-membrane for molecular sieving predicted by IR-diffusion studies and molecular modeling [J]. Advanced Materials, 2010, 22: 4741-4743

[39]

HuY-x, DongX-l, NanJ-p, JinW-q, RenX-m, XuN-p, LeeY-moo. Metal–organic framework membranes fabricated via reactive seeding [J]. Chemical Communications, 2011, 47: 737-739

[40]

NanJ-p, DongX-l, WangW-j, JinW-q, XuN-ping. Step-by-step seeding procedure for preparing HKUST-1 membrane on porous α-alumina support [J]. Langmuir, 2011, 27: 4309-4312

[41]

LiY-S, BuxH, FeldhoffA, LiG-L, YangW-s, CaroJ. Controllable synthesis of metal–organic frameworks: From MOF nanorods to oriented MOF membranes [J]. Advanced Materials, 2010, 22: 3322-3326

[42]

ZouX-q, ZhuG-s, ZhangF, GuoM-y, QiuS-lun. Facile fabrication of metal–organic framework films promoted by colloidal seeds on various substrates [J]. Cryst Eng Comm, 2010, 12: 352-354

[43]

ZhaoZ-x, MaX-l, LiZ, LinY S. Synthesis, characterization and gas transport properties of MOF-5 membranes [J]. Journal of Membrane Science, 2011, 382: 82-90

[44]

KanezashiM, LinY S. Gas permeation and diffusion characteristics of MFI-type zeolite membranes at high temperatures [J]. The Journal of Physical Chemistry C, 2009, 113: 3767-3774

[45]

AlgieriC, BernardoP, GolemmeG, BarbieriG, DrioliE. Permeation properties of a thin silicalite-1 (MFI) membrane [J]. Journal of Membrane Science, 2003, 222: 181-190

[46]

AdatozE, AvciAK, KeskinS. Opportunities and challenges of MOF-based membranes in gas separations [J]. Separation and Purification Technology, 2015, 152: 207-237

[47]

GuoH-l, ZhuG-s, HewittI J, QiuS-lun. “Twin copper source” growth of metal−organic framework membrane: Cu3(BTC)2 with high permeability and selectivity for recycling H2 [J]. Journal of the American Chemical Society, 2009, 131: 1646-1647

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/