Elasticity under pressure and thermal property of Mg2La from first-principles calculations

Xiao-feng Niu , Zhi-wei Huang , Lei Hu , Han Wang , Bao-jian Wang

Journal of Central South University ›› 2017, Vol. 24 ›› Issue (8) : 1713 -1719.

PDF
Journal of Central South University ›› 2017, Vol. 24 ›› Issue (8) : 1713 -1719. DOI: 10.1007/s11771-017-3578-6
Article

Elasticity under pressure and thermal property of Mg2La from first-principles calculations

Author information +
History +
PDF

Abstract

The elastic properties, thermodynamic and electronic structures of Mg2La were investigated by using first-principles. The calculated results show that pressure affects the elastic constants of C11 more than that of C12 and C44. Specifically, higher pressure leads to greater bulk modulus (B), shear modulus (G), and elastic modulus (E). We predict B/G and anisotropy factor A based on the calculated elastic constants. The Debye temperature also increases with increasing pressure. Based on the quasi-harmonic Debye model, we examined the thermodynamic properties. These properties include the normalized volume (V/V0), bulk modulus (B), heat capacity (Cv), thermal expansion coefficient (α), and Debye temperature (Θ). Finally, the electronic structures associated with the density of states (DOS) and Mulliken population are analyzed.

Keywords

first-principles / elastic properties / thermodynamics properties / electronic structure

Cite this article

Download citation ▾
Xiao-feng Niu, Zhi-wei Huang, Lei Hu, Han Wang, Bao-jian Wang. Elasticity under pressure and thermal property of Mg2La from first-principles calculations. Journal of Central South University, 2017, 24(8): 1713-1719 DOI:10.1007/s11771-017-3578-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

PotziesC, KainerkU. Fatigue of magnesium alloys [J]. Advanced Engineering Materials, 2004, 6(6): 281-289

[2]

BlawertC H, KainerkU. Automotive applications of magnesium and its alloys [J]. Transactions of the Indian Institute of Metals, 2004, 57(4): 397-408

[3]

NieJ F. Preface to viewpoint set on: Phase transformations and deformation in magnesium alloys [J]. Scripta Materialia, 2003, 48: 981-984

[4]

MordikeB L, EbertT. Magnesium: Properties–applications-potential [J]. Materials Science and Engineering A, 2001, 302: 37-45

[5]

WangY-f, ZhangW-b, WangZ-zhong. Firstprinciples study of structural stabilities and electronic characteristics of Mg-La intermetallic compounds [J]. Computational Materials Science, 2007, 41(1): 78-85

[6]

ChenQ-y, TanS-y, LaiX-chun. First-principles study of the elastic constants and optical properties of uranium metal [J]. Chin Phys B, 2012, 21(8): 1-8

[7]

ChenQ, HuangZ-w, ZhaoZ-de. First principles study on elastic properties, thermodynamics and electronic structural of AB2 type phases in magnesium alloy [J]. Solid State Communications, 2013, 162(2): 1-7

[8]

BouhemadouA, KhenataR. Prediction study of structural and elastic properties under the pressure effect of M2GaC (M=Ti,V,Nb,Ta) [J]. Journal of Applied Physics, 2007, 102(4): 043528

[9]

SegallM D, Lindan PhilipJ D, ProbertM J, PickardC J, HasnipP J, ClarkS J, PayneM C. First-principles simulation: Ideas, illustrations and the CASTEP code [J]. Physical, 2002, 14: 2717-2744

[10]

KohnW, ShamL. Self-consistent equations including exchaneg and correlation effect [J]. Physical Review, 1965, 1401133-1138

[11]

PackJ D, MonkhorstH J. Special points for Brillouin-zone integrations a reply [J]. Physical Review B, 1977, 16(12): 5188-5192

[12]

PerdewjP, BurkeK, ErnzerhM. Erratum: Generalized gradient approximation made simple [J]. Physical Review Lett, 1996, 77(18): 3865-3868

[13]

NylenJ. Structural relationships, phase stability and bonding of compounds PdSnn(n=2, 3, 4) [J]. Cheminform, 2004, 6(1): 147-155

[14]

MonkhorsH J, PackJ D. Special points for Brillouin-zone integrations [J]. Physical Review B, 1976, 13: 88-92

[15]

HammerB, HansenL B, NorskovJ K. Improved adsorption energetics within density-functional theory using revised Perdew- Burke-Ernzerhof functionals[J]. Physical Review B, 1999, 59: 7413-7421

[16]

FischerT H, AlmlofJ. General methods for geometry and wave function optimization [J]. Journal of Physical Chemistry, 1992, 96(24): 9768-9774

[17]

FanC-z, ZengS-y, LiL-x, LiuR-ping. Potential super-hard Osmium di-nitride with fluorite structure: First-principles calculations [J]. Physical Review B, 2006, 74(12): 125118-125123

[18]

BlancoM A, FranciscoE, LuanaV. GIBBS: Isothermalisobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model [J]. Computer Physics Communications, 2004, 158(1): 57-72

[19]

PughaS F. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals [J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954, 45: 823-843

[20]

MayerB, AntonH, BottE, MethfesselM, StichtJ. Ab-initio calculation of the elastic constants and thermal expansion coefficients of Laves phases [J]. Intermetallics, 2003, 11(1): 23-32

[21]

LuJ-m, HuQ-m, YangRui. A comparative study of elastic constants of NiTi and NiAl alloys from first-principle calculations [J]. J Mater Sci Technol, 2009, 25(2): 215-218

[22]

WangC-j, GuJ-b, KuangX-yu. Accurate calculations of the high-pressure elastic constants based on the firstprinciples [J]. Chin Phys B, 2015, 24(8): 1-6

[23]

CiftciY O, ColakogluK, DeligozE, BayhanU. First- Principles calculations on structure, elastic and thermodynamic properties of Al2X (X=Sc, Y) under pressure[J]. Mater Sci Technol, 2012, 28: 155-163

[24]

WangJ-y, ZhouY-chun. Dependence of elastic stiffness on electronic band structure of nanolaminate M2AlC (M=Ti,V,Nb, and Cr) ceramics [J]. Physical ReviewB, 2004, 69(21): 1681-1685

[25]

HillR. The elastic behavior of a crystalline aggregate [J]. Proceedings of the Physical Society, 1952, 65(5): 349-354

[26]

WuZ-j, ZhaoE-j, XiangM Jian. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles [J]. Physical Review B, 2007, 76(5): 15-29

[27]

BirchF. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300/sup 0/K [J]. Geophys. Res (United States), 1978, 83(B3): 1257-1268

[28]

TvergaardV, HutchinsonJ W. Microcracking in ceramics induced by thermal expansion or elastic anisotropy [J]. American Ceramic Society, 1988, 71: 157-166

[29]

KarkiB B, StixrudeL, ClarkS J, WarrenM C, AcklandG J. Structure and elasticity of MgO at high pressure [J]. American Mineralogist, 1997, 82(B6): 51-60

[30]

MayerB, AntonH, BottE, MethfesselM, StichtJ. Ab-initio calculation of the elastic constants and thermal expansion coefficients of Laves phases [J]. Intermetallics, 2003, 11(1): 23-32

[31]

DeligozE, CiftciY O, JochymP T, ColakogluK. The first principles study on PtC compound materials [J]. Materials Chemistry Physics, 2008, 111(1): 29-33

[32]

Sin’KoG V, SmirnovN A. Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure [J]. Journal of Physics Condensed Matter, 2002, 14(29): 6989-7005

[33]

DebyeP. The theory of specific heat [J]. Annalen der Physik, 1912, 39: 789-839

[34]

FengJ-l, XiaoB, ZhouR, PanWill. Thermal expansions of Ln2Zr2O7 (Ln=La, Nd, Sm, and Gd) pyrochlore [J]. Journal of Applied Physics, 2012, 111(10): 1-4

[35]

BujardP, WalkerE. Elastic constants of Cr3Si solid State [J]. Solid State Communications, 1981, 39(5): 667-669

AI Summary AI Mindmap
PDF

164

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/