Control mechanism of a cable truss system for stability of roadways within thick coal seams

Hong Yan , Fu-lian He , Lin-yue Li , Rui-min Feng , Peng-fei Xing

Journal of Central South University ›› 2017, Vol. 24 ›› Issue (5) : 1098 -1110.

PDF
Journal of Central South University ›› 2017, Vol. 24 ›› Issue (5) : 1098 -1110. DOI: 10.1007/s11771-017-3513-x
Article

Control mechanism of a cable truss system for stability of roadways within thick coal seams

Author information +
History +
PDF

Abstract

Cable truss systems have been widely applied in roadways with complicated conditions, such as the large cross-sections of deep wells, and high tectonic stress. However, they are rarely applied to roadways with extremely thick coal seams because the control mechanism of the system for the deformation of the roof and the separation between coal rock segments is not completely understood. By using the relationship between the support system and the roof strata, a mechanical model was established to calculate the deformation of the roof in a thick coal seam with bedding separation under different support conditions: with an anchor truss support and without support. On this basis, the research was used to deduce a method for computing the minimum pre-tightening forces in the anchor truss, the maximum amounts of subsidence and separation with, and without, anchor truss support under the roof, and the maximum subsidence and the decreasing amounts of the separation before and after adopting the anchor truss. Additionally, mechanical relationships between the minimum pre-tightening force and the anchoring force in the anchor were analyzed. By taking a typical roadway with thick coal roof as an example, the theoretical results mentioned above were applied in the analysis and testing of a roof supporting project in a roadway field to verify the accuracy of the theory: favorable experimental results were achieved. In addition, the relationships among other parameters were analyzed, including the minimum pre-tightening forces applied by the anchor truss, the angle of inclination of the anchor cable, and the array pitch. Meanwhile, the changing characteristics of the amounts of roof separation and subsidence with key parameters of the support system (such as array pitch, pre-tightening force, and inclination angle) were also analyzed. The research results revealed the acting mechanism of the anchor truss in control of roadway stability with a thick coal seam, providing a theoretical basis of its application in coal mining.

Keywords

cable truss system / thick coal seam / roof separation / pre-tightening force

Cite this article

Download citation ▾
Hong Yan, Fu-lian He, Lin-yue Li, Rui-min Feng, Peng-fei Xing. Control mechanism of a cable truss system for stability of roadways within thick coal seams. Journal of Central South University, 2017, 24(5): 1098-1110 DOI:10.1007/s11771-017-3513-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BradyB, BrownERock mechanics for underground mining (3rd edition)[M], 1985, Dordrecht, Kluwer Academic Publishers: 312320

[2]

YanH, ZhangJ-x, LiL-y, FengR-min. Stability assessment of rock surrounding an I-beam supported retreating roadway [J]. Journal of Central South University, 2015, 22(9): 3598-3607

[3]

XieS-r, LiE-p, LiS-j, WangJ-g, HeC-c, YangY-feng. Surrounding rock control mechanism of deep coal roadways and its application [J]. International Journal of Mining Science and Technology, 2015, 25(3): 429-434

[4]

GongF-q, LiX-b, GaoKe. Catastrophe progression method for stability classification of underground engineering surrounding rock [J]. Journal of Central South University: Science and Technology, 2008, 39(5): 1081-1087

[5]

UnverB, YasitliN E. Modeling of strata movement with a special reference to caving mechanism in thick seam coal mining [J]. International Journal of Coal Geology, 2006, 4(3): 227-252

[6]

LiJ-p, HeF-l, YanH, JiangH-jun. The caving and sliding control of surrounding rocks on large coal roadways affected by abutment pressure [J]. Safety Science, 2012, 50(4): 773-777

[7]

YanH, HeF-l, XuT-fei. Study on double-cable-truss controlling system for large section coal roadway of deep mine and its practice [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(11): 2248-2257

[8]

HeF-l, YinD-p, YanHong. Study on the coupling system of high prestress cable truss and surrounding rock on a coal roadway [C]. Rock Stress and Earthquakes -Proceedings of the 5th International Symposium on In-Situ Rock Stress. Beijing, 2010643646

[9]

YanH, HeF-lian. A new cable truss support system for coal roadways affected by dynamic pressure [J]. International Journal of Mining Science and Technology, 2012, 22(9): 613-617

[10]

SheoreyP, VermaB, SinghB. An analysis of the roof truss [J]. Journal of Mines, Metals and Fuels, 1973, 21(8): 233-236

[11]

GhabraieB, RenG, GhabraieK, XieY-min. A study on truss bolt mechanism in controlling stability of underground excavation and cutter roof failure [J]. Geotechnical Geological Engineering, 2013, 31(2): 667-682

[12]

GambrellS, CraneP. Support characteristics of classic and in-cycle trusses (a photoelastic comparison). Rock Mechanics: Key to Energy Production, Proceedings of the 27th US Symposium on Rock Mechanics, 1986505511

[13]

NeallG M, HaycocksC, TownsendJ M. Influence of some critical design parameters on roof truss support capacity: A preliminary report [C]. Rock Mechanics Applications in Mining. New York, USA, 1977228233

[14]

NeallG M, HaycocksC, TownsendJ M, JohnsonL P. Optimizing roof truss installations with body-loaded photoelastic models [J]. Min Eng, 1978, 30(5): 660-666

[15]

GambrellS, HaynesC. In-situ roof trusses vs. angle roof bolts, a photoelastic comparison [J]. Trans Soc Min Eng AIME, 1970, 247(2): 109-110

[16]

KhairA W. Physical and analytical modeling of the behavior of truss bolted mine roofs [C]. Rock Bolting: Theory and Application in Mining and Underground Construction. Abisko, Sweden, 1984125142

[17]

CoxR M, CoxM. Design and application of the mine roof truss system in the Illinois coal basin [C]. Proceedings of the First Conference on Ground Control Problems in Illinois Coal Basin. Carbondale, IL, USA, 1978124135

[18]

StankusJ C, GuoS, MccafferyJ J. Innovative concept in tailgate entry support: Elimination of crib blocks through utilization of new high-capacity roof truss systems [J]. Mining Engineering, 1996, 48(9): 57-62

[19]

SeegmillerB, ReevesJ. Truss performance at Dutch Creek Mine, Colorado Colliery guardian Redhill [J]. Colliery Guardian Redhill, 1990, 238(6): 164-166

[20]

LiuB, YueZ, ThamL. Analytical design method for a truss-bolt system for reinforcement of fractured coal mine roofs: Illustrated with a case study [J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(2): 195-218

[21]

LiuB, LiX-w, TaoL-guang. Analysis on lateral behavior of bolts in roof truss system [J]. Chinese Journal of Geotechnical Engineering, 1998, 20(4): 36-39

[22]

ZhuF, YoungD S. Analysis of roof truss for underground support [C]. Geo-Engineering for Underground Facilities. ASCE, 1999507513

[23]

GhabraieB, RenG, GhabraieK. Effects of thickness of roof layers on optimum design of truss bolt system using finite element modeling techniques [J]. Electronic Journal of Geotechnical Engineering, 2013, 18A: 147-158

[24]

O’GradyP, FullerPG. Design considerations for cable truss secondary supports in roadways of underground collieries [C]. Proceedings of the 11th International Conference on Ground Control in Mining. Wollongong, 1992240248

[25]

LiuB, TaoL-g, LiX-wei. Development and application of bolt truss in layer roof [J]. Coal Science and Technology, 1999, 27(7): 34-36

[26]

LiG-c, ZhangN, LiuZ-h, KanJ-guang. Prestress truss bolt support technology for coal roadway [J]. Journal of Mining & Safety Engineering, 2007, 24(2): 150-154

[27]

KushwahaA, SinghS K, TewariS. Empirical approach for designing of support system in mechanized coal pillar mining [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(7): 1063-1078

[28]

YanH, ZhangJ-x, DingZ-w, HuangY-li. Surrounding rock deformation mechanism of roadways with extra-thick coal seam [J]. Disaster Advances, 2013, 6: 226-233

[29]

OuG-b, ZhuJ-mingMechanics of material [M], 1997, Harbin, Harbin Engineering University Press: 9397

[30]

ZhaoH-l, YaoJ-m, HeF-lian. Application of prestress truss cable in large cross section coal roadway [J]. Journal of China Coal Society, 2007, 32(10): 1061-1065

[31]

ZhangN, GaoM-s, XuX-liang. Pretentioned supporting system of roadway and its engineering application [J]. Journal of Mining & Safety Engineering, 2002, 12(4): 1-4

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/