Robust elastic impedance inversion using L1-norm misfit function and constraint regularization

Xin-peng Pan , Guang-zhi Zhang , Jia-jie Song , Jia-jia Zhang , Bao-li Wang , Xing-yao Yin

Journal of Central South University ›› 2017, Vol. 24 ›› Issue (1) : 227 -235.

PDF
Journal of Central South University ›› 2017, Vol. 24 ›› Issue (1) : 227 -235. DOI: 10.1007/s11771-017-3423-y
Article

Robust elastic impedance inversion using L1-norm misfit function and constraint regularization

Author information +
History +
PDF

Abstract

The classical elastic impedance (EI) inversion method, however, is based on the L2-norm misfit function and considerably sensitive to outliers, assuming the noise of the seismic data to be the Guassian-distribution. So we have developed a more robust elastic impedance inversion based on the L1-norm misfit function, and the noise is assumed to be non-Gaussian. Meanwhile, some regularization methods including the sparse constraint regularization and elastic impedance point constraint regularization are incorporated to improve the ill-posed characteristics of the seismic inversion problem. Firstly, we create the L1-norm misfit objective function of pre-stack inversion problem based on the Bayesian scheme within the sparse constraint regularization and elastic impedance point constraint regularization. And then, we obtain more robust elastic impedances of different angles which are less sensitive to outliers in seismic data by using the IRLS strategy. Finally, we extract the P-wave and S-wave velocity and density by using the more stable parameter extraction method. Tests on synthetic data show that the P-wave and S-wave velocity and density parameters are still estimated reasonable with moderate noise. A test on the real data set shows that compared to the results of the classical elastic impedance inversion method, the estimated results using the proposed method can get better lateral continuity and more distinct show of the gas, verifying the feasibility and stability of the method.

Keywords

elastic impedance (EI) inversion / L1-norm misfit function / sparse constraint regularization / elastic impedance point constraint regularization / IRLS strategy

Cite this article

Download citation ▾
Xin-peng Pan, Guang-zhi Zhang, Jia-jie Song, Jia-jia Zhang, Bao-li Wang, Xing-yao Yin. Robust elastic impedance inversion using L1-norm misfit function and constraint regularization. Journal of Central South University, 2017, 24(1): 227-235 DOI:10.1007/s11771-017-3423-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ClaeroutJ F, MuirF. Robust modeling with erratic data [J]. Geophysics, 1973, 38(5): 826-844

[2]

TaylorH L, BanksS C, MccoyJ F. Deconvolution with the L-one norm [J]. Geophysics, 1979, 44(1): 39-52

[3]

TarantolaAInverse problem theory, methods for data fitting and model parameter estimation [M], 1987New YorkElsevier Science Publishers

[4]

ScalesJ A, GersztenkorN. Robust methods in inverse theory [J]. Inverse Problems, 1988, 4: 1071-1091

[5]

JiJ. Robust inversion using biweight norm and its application to seismic inversion [J]. Exploration Geophysics, 2012, 43(2): 70-76

[6]

ZhangF C, DaiR H, LiuH Q. Seismic inversion based on L1-norm misfit function and total variation regularization [J]. Journal of Applied Geophysics, 2014, 109: 111-118

[7]

SafonC, VasseurG, CuerM. Some applications of linear programming to the inverse gravity problem [J]. Geophysics, 1977, 42(6): 1215-1229

[8]

DaubechiesI, DevoreR, FornasierM, GunturkC S. Iteratively reweighted least squares minimization for sparse recovery [J]. Communications on Pure and Applied Mathematics, 2010, 63: 1-38

[9]

AsterR C, BorchersB, ThurberC HParameter estimation and inverse problems [M], 2013

[10]

TikhonovA N, ArseninV Y. Solutions of ill-posed problems [J]. Mathematics of Computation, 1977, 32(144): 1320-1322

[11]

TikhonovA N, GoncharskyA V, StepanovV V, YagolaA GNumerical methods for the solution of ill-posed problems [M], 1995

[12]

WangY F. Seismic impedance inversion using l1-norm regularization and gradient descent methods [J]. J Inv Ill-Posed Problems, 2011, 18: 823-838

[13]

BulandA, OmreH. Bayesian linearized AVO inversion [J]. Geophysics, 2003, 68(1): 185-198

[14]

DowntonJ ESeismic parameter estimation from AVO inversion [D], 2005CalgaryUniversity of Calgary

[15]

TheuneU, JensasI, EidsivikJ. Analysis of prior models for a blocky inversion of seismic AVA data [J]. Geophysics, 2010, 75(3): 25-35

[16]

AlemieW, SacchiM D. High-resolution three-term AVO inversion by means of a trivariate Cauchy probability distribution [J]. Geophysics, 2011, 76(3): 43-55

[17]

ZongZ Y, YinX Y, WuG C. Elastic impedance parameterization and inversion with Young’s modulus and Poisson’s ratio [J]. Geophysics, 2013, 78(6): 35-42

[18]

ConnollyP. Elastic impedance [J]. The Leading Edge, 1999, 18(4): 438-452

[19]

WhitcombeD N. Elastic impedance normalization [J]. Geophysics, 2002, 67(1): 60-62

[20]

UlrychT J, SacchiM D, WoodburyA. A Bayes tour of inversion: A tutorial [J]. Geophysics, 2001, 66(1): 55-69

[21]

GersztenkornA, BednarJ B, LinesL R. Robust iterative inversion for the one-dimensional acoustic wave equation [J]. Geophysics, 1986, 51(2): 357-368

[22]

GuittonA, SynesW W. Robust inversion of seismic data using the Huber norm [J]. Geophysics, 2003, 68(4): 1310-1319

[23]

TarantolaAInverse problem theory and methods for model parameter estimation [M], 2005

[24]

LindsayR, KoughnetV. Sequential Backus averaging: upscaling well logs to seismic wavelengths [J]. The Leading Edge, 2001, 20(2): 188-191

[25]

RoyleA JExploitation of an oil field using AVO and post-stack rock property analysis methods [J], 200113-17

[26]

FochtG W, BakerF E. Geophysical case history of the two hills colony gas field of alberta [J]. Geophysics, 1985, 50(7): 1061-1076

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/