Improved SMB speckle filtering of polarimetric SAR data with synergistic use of orientation angle compensation and spatial majority rule

Lin Liu , Li-ming Jiang , Hong-zhong Li

Journal of Central South University ›› 2016, Vol. 23 ›› Issue (6) : 1508 -1514.

PDF
Journal of Central South University ›› 2016, Vol. 23 ›› Issue (6) : 1508 -1514. DOI: 10.1007/s11771-016-3202-1
Geological, Civil, Energy and Traffic Engineering

Improved SMB speckle filtering of polarimetric SAR data with synergistic use of orientation angle compensation and spatial majority rule

Author information +
History +
PDF

Abstract

The scattering-model-based (SMB) speckle filtering for polarimetric SAR (PolSAR) data is reasonably effective in preserving dominant scattering mechanisms. However, the efficiency strongly depends on the accuracies of both the decomposition and classification of the scattering properties. In addition, a relatively weak speckle reduction particularly in distributed media was reported in the related literatures. In this work, an improved SMB filtering strategy is proposed considering the aforementioned deficiencies. First, the orientation angle compensation is incorporated into the SMB filtering process to remedy the overestimation of the volume scattering contribution in the Freeman-Durden decomposition. In addition, an algorithm to select the homogenous pixels is developed based on the spatial majority rule for adaptive speckle reduction. We demonstrate the superiority of the proposed methods in terms of scattering property preservation and speckle noise reduction using L-band PolSAR data sets of San Francisco that were acquired by the NASA/JPL airborne SAR (AIRSAR) system.

Keywords

scattering-model-based (SMB) speckle filter / polarimetric synthetic aperture radar / orientation angle compensation / spatial majority rule

Cite this article

Download citation ▾
Lin Liu, Li-ming Jiang, Hong-zhong Li. Improved SMB speckle filtering of polarimetric SAR data with synergistic use of orientation angle compensation and spatial majority rule. Journal of Central South University, 2016, 23(6): 1508-1514 DOI:10.1007/s11771-016-3202-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BrownW M. Synthetic aperture radar [J]. IEEE Trans Aerosp Electron Syst, 1967, 3: 217-229

[2]

SabryR, VachonP W. A unified framework for general compact and quad polarimetric SAR data and imagery analysis [J]. IEEE Trans Geosci Remote Sens, 2014, 52: 582-602

[3]

NovakL M, BurlM C. Optimal speckle reduction in polarimetric SAR imagery [J]. IEEE Trans Aerosp Electron Syst, 1990, 26: 293-305

[4]

LeeJ S, GrunesM R, MangoS A. Speckle reduction in multipolarization, multifrequency SAR imagery [J]. IEEE Trans Geosci Remote Sens, 1991, 29: 535-544

[5]

GozeS, LopesA. A MMSE speckle filter for full resolution SAR polarimetric data [J]. J Electromagn Waves Appl, 1993, 7: 717-737

[6]

LeeJ S, GrunesM R, GrandiG. Polarimetric SAR speckle filtering and its implication for classification [J]. IEEE Trans Geosci Remote Sens, 1999, 37: 2363-2373

[7]

GuJ, YangJ, ZhangH, PengY-n, WangC, ZhangHong. Speckle filtering in polarimetric SAR data based on the subspace decomposition [J]. IEEE Trans Geosci Remote Sens, 2004, 42: 1635-1641

[8]

VasileG, OvarlezJ P, PascalF, TisonC. Coherency matrix estimation of heterogeneous clutter in high-resolution polarimetric SAR images [J]. IEEE Trans Geosci Remote Sens, 2010, 48: 1809-1826

[9]

ChenJ, ChenY-l, AnW-t, CuiY, YangJian. Nonlocal filtering for polarimetric SAR data: A pretest approach [J]. IEEE Trans Geosci Remote Sens, 2011, 49: 1744-1754

[10]

LeeJ S, GrunesM R, SchulerD L, PottierE, FerrofamilL. Scattering-model-based speckle filtering of polarimetric SAR data [J]. IEEE Trans Geosci Remote Sens, 2006, 44: 176-187

[11]

LiH-z, ChenJ-s, JiangL-m, LiuLin. Preservation of polarimetric properties filtering for TSX data based on Barnes decomposition [J]. IEEE J Sel Top Appl Earth Obs Remote Sens, 2012, 5: 1831-1836

[12]

LeeJ S, GrunesM R, PottierE, Ferro-FamilL. Unsupervised terrain classification preserving polarimetric scattering characteristics [J]. IEEE Trans Geosci Remote Sens, 2004, 42: 722-731

[13]

LiaoM-s, WangY, WangC-c, LiuLin. Modification of a scattering model-based speckle filter applied to coastal environments: An LULC study using PALSAR data [J]. Int J Remote Sens, 2010, 31: 2101-2107

[14]

KharboucheS, ClavetD. Speckle reducing in PolSAR images for topographic feature extraction [J]. Int J Image Data Fusion, 2013, 4: 146-158

[15]

LandgrebeD A. The development of a spectral-spatial classifier for earth observational data [J]. Pattern Recognit, 1980, 12: 165-175

[16]

YamaguchiY, MoriyamaT, IshidoM, YamadaH. Four-component scattering model for polarimetric SAR image decomposition [J]. IEEE Trans Geosci Remote Sens, 2005, 43: 1699-1706

[17]

XuF, JinY-qiu. Deorientation theory of polarimetric scattering targets and application to terrain surface classification [J]. IEEE Trans Geosci Remote Sens, 2005, 43: 2351-2364

[18]

LamL, SuenS. Application of majority voting to pattern recognition: an analysis of its behavior and performance [J]. IEEE Trans Syst Man Cybern A Syst Hum, 1997, 27: 553-568

[19]

TarabalkaY, BenediktssonJ A, ChanussotJ. Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques [J]. IEEE Trans Geosci Remote Sens, 2009, 47: 2973-2987

[20]

ToutziR. A review of speckle filtering in the context of estimation theory [J]. IEEE Trans Geosci Remote Sens, 2002, 40: 2392-2404

[21]

LeeJ S, WenJ H, AinsworthT, ChenK S, ChenAbel. Improved sigma filter for speckle filtering of SAR imagery [J]. IEEE Trans Geosci Remote Sens, 2009, 47: 202-213

AI Summary AI Mindmap
PDF

92

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/