Time-domain compressive dictionary of attributed scattering center model for sparse representation

Jin-rong Zhong , Gong-jian Wen

Journal of Central South University ›› 2016, Vol. 23 ›› Issue (3) : 604 -622.

PDF
Journal of Central South University ›› 2016, Vol. 23 ›› Issue (3) : 604 -622. DOI: 10.1007/s11771-016-3107-z
Article

Time-domain compressive dictionary of attributed scattering center model for sparse representation

Author information +
History +
PDF

Abstract

Parameter estimation of the attributed scattering center (ASC) model is significant for automatic target recognition (ATR). Sparse representation based parameter estimation methods have developed rapidly. Construction of the separable dictionary is a key issue for sparse representation technology. A compressive time-domain dictionary (TD) for ASC model is presented. Two-dimensional frequency domain responses of the ASC are produced and transformed into the time domain. Then these time domain responses are cutoff and stacked into vectors. These vectored time-domain responses are amalgamated to form the TD. Compared with the traditional frequency-domain dictionary (FD), the TD is a matrix that is quite spare and can markedly reduce the data size of the dictionary. Based on the basic TD construction method, we present four extended TD construction methods, which are available for different applications. In the experiments, the performance of the TD, including the basic model and the extended models, has been firstly analyzed in comparison with the FD. Secondly, an example of parameter estimation from SAR synthetic aperture radar (SAR) measurements of a target collected in an anechoic room is exhibited. Finally, a sparse image reconstruction example is from two apart apertures. Experimental results demonstrate the effectiveness and efficiency of the proposed TD.

Keywords

attributed scattering center model / parameter estimation / dictionary / time domain

Cite this article

Download citation ▾
Jin-rong Zhong, Gong-jian Wen. Time-domain compressive dictionary of attributed scattering center model for sparse representation. Journal of Central South University, 2016, 23(3): 604-622 DOI:10.1007/s11771-016-3107-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

PotterL. C., ChiangD. M., CarriereR., MichaelJ. G.. A GTD-based parametric model for radar scattering [J]. IEEE Transactions on Antennas and Propagation, 1995, 43(11): 1058-1067

[2]

PotterL. C., MosesR. L.. Attributed scattering centers for SAR ATR [J]. IEEE Transactions on Image Processing, 1997, 6(1): 79-91

[3]

DunganK., PotterL. C.. 3-D imaging of vehicles using wide aperture radar [J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 187-200

[4]

GerryM. J., PotterL. C., GuptaI. J., MerweA.. A parametric model for synthetic aperture radar measurements [J]. IEEE Transactions on Antennas and Propagation, 1999, 6(1): 1179-1188

[5]

KoetsM. A., MosesR. L.. Feature extraction using attributed scattering center models on SAR image [C]. Proceeding in Algorithms for Synthetic Aperture Radar Imagery VI. Orlando: SPIE, 1999, 3721: 104-115

[6]

AkyildizY.Feature extraction from synthetic aperture radar imagery [D], 2000Ohio, USADept Electron Eng, Ohio State University

[7]

AustinC. D.Sparse methods for model estimation with applications to radar imaging [D], 2012ColumbusThe Ohio State University

[8]

YangZ. Y., XingY., XieS. L., DingS. X.. Nonnegative blind source separation by sparse component analysis based on determinant measure [J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(10): 1601-1610

[9]

DonohoD. L.. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306

[10]

DuX.-Y., HuW.-D., YuW.-X.. Parameter estimation of GTD model based on sparse component analysis [J]. Journal of Electronics & Information Technology, 2006, 28(2): 363-366

[11]

ZhanR.-h., HuJ.-m., ZhangJ.. A novel method for parametric estimation of 2D geometrical theory of diffraction model based on compressed sensing [J]. Journal of Electronics & Information Technology, 2013, 28(2): 419-425

[12]

AustinC. D., ErtinE., MosesR. L.. Sparse signal methods for 3D radar imaging [J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(3): 408-423

[13]

LiF., JiuB., LiuH.-w.. Sparse representation based algorithm for estimation of attributed scattering center parameter on SAR imagery [J]. Journal of Electronics & Information Technology, 2014, 36(4): 931-937

[14]

DonohoD. L., ElakM., TemlyakovV. N.. Stable recovery of sparse over complete representation in the presence of noise [J]. IEEE Transactions Information Theory, 2006, 52(1): 6-18

[15]

CadesE., RombergJ., TaoT.. Stable signal recovery from incomplete and inaccurate measurements [J]. Comm Pure Appl Math, 2006, 59(8): 1207-1223

[16]

CevherV., KrauseA.. Greedy dictionary selection for sparse representation [J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5(5): 979-988

[17]

TroppJ. A., GilbertA. C.. Signal recovery from random measurements via orthogonal matching pursuit [J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666

[18]

SelesnicI. W., BayramI.. Sparse signal estimation by maximally sparse convex optimization [J]. IEEE Transactions on Signal Processing, 2014, 59(11): 5202-5211

[19]

DaiH.-y., WangX.-s., LiY.-z.. A new polarimetric method by using spatial polarization characteristics of scanning antenna [J]. Transactions on Antennas and Propagation, 2012, 60(3): 1653-1656

[20]

QiuW., ZhaoH.-z., ZhouJ.-x., FuQ.. High-resolution fully polarimetric ISAR imaging based on compressive sensing [J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6119-6131

[21]

KayS. M.Fundamentals of statistical signal processing volume I: Estimation theory [J], 1993157-214

[22]

KimS. J., KohK., LustingM., BoydS., GorinevskyD.. A method for large-scale l1-regularized least squares [J]. IEEE Journal on Selected Topics in Signal Processing, 2007, 1(4): 606-617

[23]

Simple matlab solver for 11-regularized least squares problems. [2014-06]. http://web.stanford.edu/~boyd/l1_ls/.

[24]

JacksonJ. A., RiglingB. D., MosesR. L.. Canonical scattering feature models for 3D and bistatic SAR [J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(2): 525-541

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/