An analytical model to explore open-circuit voltage of a-Si:H/c-Si heterojunction solar cells

Chun-liang Zhong , Kui-wei Geng , Lan-e Luo , Di-wu Yang

Journal of Central South University ›› 2016, Vol. 23 ›› Issue (3) : 598 -603.

PDF
Journal of Central South University ›› 2016, Vol. 23 ›› Issue (3) : 598 -603. DOI: 10.1007/s11771-016-3106-0
Article

An analytical model to explore open-circuit voltage of a-Si:H/c-Si heterojunction solar cells

Author information +
History +
PDF

Abstract

The effect of the parameters on the open-circuit voltage, VOC of a-Si:H/c-Si heterojunction solar cells was explored by an analytical model. The analytical results show that VOC increases linearly with the logarithm of illumination intensity under usual illumination. There are two critical values of the interface state density (Dit) for the open-circuit voltage (VOC), Ditcrit,1 and Ditcrit,2 (a few 1010 cm−2∙eV−1). VOC decreases remarkably when Dit is higher than Ditcrit,1. To achieve high VOC, the interface states should reduce down to a few 1010 cm−2·eV−1. Due to the difference between the effective density of states in the conduction and valence band edges of c-Si, the open-circuit voltage of a-Si:H/c-Si heterojunction cells fabricated on n-type c-Si wafers is about 22 mV higher than that fabricated on p-type c-Si wafers at the same case. VOC decreases with decreasing the a-Si:H doping concentration at low doping level since the electric field over the c-Si depletion region is reduced at low doping level. Therefore, the a-Si:H layer should be doped higher than a critical value of 5×1018 cm−3 to achieve high VOC.

Keywords

solar cells / a-Si:H/c-Si heterojunctions / open-circuit voltage

Cite this article

Download citation ▾
Chun-liang Zhong, Kui-wei Geng, Lan-e Luo, Di-wu Yang. An analytical model to explore open-circuit voltage of a-Si:H/c-Si heterojunction solar cells. Journal of Central South University, 2016, 23(3): 598-603 DOI:10.1007/s11771-016-3106-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

TsunomuraY., YoshimineY., TaguchiM., BabaT., KinoshitaT., KannoH., SakataH., MaruyamaE., TanakaM.. Twenty-two percent efficiency HIT solar cell [J]. Sol Energy Mater Sol Cells, 2009, 93: 670-673

[2]

WangT. H., WangQ., PageM. R., BauerR. E., CiszekT. F.. Hydrogen passivation and junction formation on APIVT-deposited thin-layer silicon by hot-wire CVD [J]. Thin Solid Films, 2003, 430: 261-264

[3]

IkhmayiesS. J., Ahmad-BitarR. N.. Using HF rather than NH4F as doping source for spray-deposited SnO2:F thin films [J]. Journal of Central South University, 2012, 19(3): 791-796

[4]

TanakaY. M., FujiwaraH.. Characterization of a-Si:H thin layers incorporated into textured a-Si:H/c-Si solar cell structures by spectroscopic ellipsometry using a tilt-angle optical configuration [J]. Thin Solid Films, 2014, 569: 64-69

[5]

Pehlivan, MendaD., KodolbasA. O., ÖzdemirO., Duygulu, KutluK., TomakM.. Structural and interfacial properties of large area n-a-Si:H/i-a-Si:H/p-c-Si heterojunction solar cells [J]. Materials Science in Semiconductor Processing, 2014, 22: 69-75

[6]

KimS. K., LeeJ. C., ParkS. J., KimY. J., YoonK. H.. Effect of hydrogen dilution on intrinsic a-Si:H layer between emitter and Si wafer in silicon heterojunction solar cell [J]. Sol Energy Mater Sol Cells, 2008, 92: 298-301

[7]

MuñozD., VozC., MartinI., OrpellaA., PuigdollersJ., AlcubillaR., VillarF., BertomeuJ., AndreuJ., Damon-LacosteJ., RocaI., CabarrocasP.. Progress in a-Si:H/c-Si heterojunction emitters obtained by Hot-Wire CVD at 200 °C [J]. Thin Solid Films, 2008, 516: 761-764

[8]

VeschettiY., MullerJ. C., Damon-LacosteJ., RocaI., CabarrocasP., GudovskikhA. S., KleiderJ. P., RibeyronP. J., RollandE.. Optimisation of amorphous and polymorphous thin silicon layers for the formation of the front-side of heterojunction solar cells on p-type crystalline silicon substrates [J]. Thin Solid Films, 2006, 511/512: 543-547

[9]

DauweS., SchmidtJ., HezelR.. Very low surface recombination velocities on p-and n-type silicon wafers passivated with hydrogenated amorphous silicon films [C]. Conference Record of the Twenty-Ninth IEEE Louisiana. New Orleans: Photovoltaic Specialists Conference, 20021246-1249

[10]

FroitzheimA., BrendelK., ElstnerL., FuhsW., KliefothK., SchmidtM.. Interface recombination in heterojunctions of amorphous and crystalline silicon [J]. J Non-cryst Solids, 2002, 299/302: 663-667

[11]

CleefM. W., RubinelliF. A., RathJ. K.. Photocarrier collection in a-SiC:H/c-Si heterojunction solar cells [J]. J Non-cryst Solids, 1998, 227/230: 1291-1294

[12]

PageM. R., IwaniczkoE., XuY. Q., RoybalL., HasoonF., WangQ., CrandallR. S.. Amorphous/crystalline silicon heterojunction solar cells with varying i-layer thickness [J]. Thin Solid Films, 2011, 519: 4527-4530

[13]

NathM., ChatterjeeP., Damon-LacosteJ., RocaI., CabarrocasP.. Criteria for improved open-circuit voltage in a-SiH/c-Si(P) front heterojubnction solar cells [J]. J Appl Phys, 2008, 103: 034506

[14]

WangQ., PageM. R., IwaniczkoE., XuY. Q., RoybalL., BauerR., ToB., YuanH. C., DudaA., YanY. F.. Crystal silicon heterojunction solar cells by hot wire CVD [C]. Proceedings of the 33rd PVSEC-IEEE. San Diego, USA: IEEE, 20081-5

[15]

DamianP. P., BivourM., HermleM., StefanW. G.. Amorphous silicon carbide heterojunction solar cells on p-type substrates [J]. Thin Solid Films, 2011, 519: 2550-2554

[16]

SchmidtM., KorteL., LaadesA., StanglR., SchubertC., AngermannH., ConradE., MaydellK. V.. Physical aspects of a-Si:H/c-Si hetero-junction solar cells [J]. Thin Solid Films, 2007, 515: 7475-7480

[17]

TucciM., Della NoceM., BobeicoE., RocaF. d., CesareG., PalmaF.. Comparison of amorphously crystalline heterojunction solar cells based on n-and p-type crystalline silicon [J]. Thin Solid Films, 2004, 451/452: 355-360

[18]

VozC., MuñozD., FonrodonaM., MartinI., PuigdollersJ., AlcubillaR., EscarreJ., BertomeuJ., AndreuJ.. Bifacial heterojunction silicon solar cells by hot-wire CVD with open-circuit voltages exceeding 600 mV [J]. Thin Solid Films, 2006, 511/512: 415-419

[19]

ZhongC. L., LuoL. E., TanH. S., GengK. W.. Band gap optimization of the window layer in silicon heterojunction solar cells [J]. Solar Energy, 2014, 8: 570-575

[20]

StanglR., FroitzheimA., KriegelM., BrammerT., KirsteS., ElstnerL., StiebigH., SchmidtM., FuhsW.. AFORS-HET, a numerical PC-program for simulation of heterojunction solar cells, Version 1.1 (open-source on demand), to be distributed for public use [C]. Proc 19th European Photovoltaic. France: Solar Energy Conference, 20041497-1500

[21]

SchmidtM., SchoepkeA., KorteL., MlichO., FuhsW.. Density distribution of gap states in extremely thin a-Si:H layers on crystalline silicon wafers [J]. J Non-cryst Solids, 2004, 211: 338-340

[22]

ZhongC. L., YaoR. H., GengK. W.. Characterization of interface states in a-Si-H/c-Si heterojunctions by an expression of the theoretical diffusion capacitance [J]. J Phys D: Appl Phys, 2010, 43: 495102

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/