Noise behaviors of a closed-loop micro-electromechanical system capacitive accelerometer

Ming-jun Ma , Zhong-he Jin , Yi-dong Liu , Tie-ying Ma

Journal of Central South University ›› 2015, Vol. 22 ›› Issue (12) : 4634 -4644.

PDF
Journal of Central South University ›› 2015, Vol. 22 ›› Issue (12) : 4634 -4644. DOI: 10.1007/s11771-015-3014-8
Article

Noise behaviors of a closed-loop micro-electromechanical system capacitive accelerometer

Author information +
History +
PDF

Abstract

The noise of closed loop micro-electromechanical systems (MEMS) capacitive accelerometer is treated as one of the significant performance specifications. Traditional optimization of noise performance often focuses on designing large capacitive sensitivity accelerometer and applying closed loop structure to shape total noise, but different noise sources in closed loop and their behaviors at low frequencies are seldom carefully studied, especially their behaviors with different electronic parameters. In this work, a thorough noise analysis is established focusing on the four noise sources transfer functions near 0 Hz with simplified electronic parameters in closed loop, and it is found that the total electronic noise equivalent acceleration varies differently at different frequency points, such that the noise spectrum shape at low frequencies can be altered from 1/f noise-like shape to flat spectrum shape. The bias instability changes as a consequence. With appropriate parameters settings, the 670 Hz resonant frequency accelerometer can reach resolution of

\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$2.6 \mu g/\sqrt {Hz}$$\end{document}
at 2 Hz and 6 μg bias instability, and 1300 Hz accelerometer can achieve
\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$5 \mu g/\sqrt {Hz}$$\end{document}
at 2 Hz and 31 μg bias instability. Both accelerometers have flat spectrum profile from 2 Hz to 15 Hz.

Keywords

closed-loop / MEMS accelerometer / noise spectrum shape / electronic parameters / bias instability

Cite this article

Download citation ▾
Ming-jun Ma, Zhong-he Jin, Yi-dong Liu, Tie-ying Ma. Noise behaviors of a closed-loop micro-electromechanical system capacitive accelerometer. Journal of Central South University, 2015, 22(12): 4634-4644 DOI:10.1007/s11771-015-3014-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

RoylanceL M, AngellJ B. A batch fabricated silicon accelerometer [J]. IEEE Trans Electron Devices, 1979, 26(12): 1911-1917

[2]

LemkinM, BoserB E. A Three-axis micromachined accelerometer with a CMOS position-sense interface and digital offset-trim electronics [J]. IEEE Journal of Solid-State Circuits, 1999, 34(4): 456-468

[3]

BernsteinJ, MillerR, KelleyW, WardP. Low-noise MEMS vibration sensor for geophysical application [J]. Journal of Microelectromechanical Systems, 1999, 8(4): 433-438

[4]

LiuC, KennyT W. A high-precision, wide-bandwidth micromachined tunneling accelerometer [J]. Journal of Microelectromechanical Systems, 2001, 10(3): 425-433

[5]

WuJ, FedderG K, CarleyL R. A low-noise low-offset capacitive sensing amplifier for a 50 -¦Ìg / Hz monolithic CMOS MEMS accelerometer [J]. IEEE Journal of Solid-State Circuits, 2004, 39(5): 722-730

[6]

ChaeJ, KulahH, NajafiK. A monolithic three-axis micro-g micromachined silicon capacitive accelerometer [J]. Journal of Microelectromechanical systems, 2005, 14(2): 235-242

[7]

DongY, KraftM, GollaschC, Redman-WhiteW. A high-performance accelerometer with a fifth-order sigma-delta modulator [J]. Journal of Micromechnics and Microengineering, 2005, 15: S22-S29

[8]

AminiB V, AbdolvandR, AyaziF. A 4.5 mW closed-loop delta-sigma micro-gravity CMOS SOI accelerometer [J]. IEEE Journal of Solid-State Circuits, 2006, 41(12): 2983-2991

[9]

QuH-w, FangD-y, XieH-kai. A monolithic CMOS-MEMS 3-axis accelerometer with a low-noise, low-power dual-chopper amplifier [J]. IEEE Sensor Journal, 2008, 8(9): 1511-1518

[10]

TsengS-H, LuM S C, WuP-c, TengY-c, TsaiH-h, JuangY-zong. Implementation of a monolithic capacitive accelerometer in a wafer-level 0.18 ¦Ìm CMOS MEMS process [J]. Journal of Micromechanics and Microengineering, 2012, 22(5): 1-14

[11]

TsaiM-h, LiuY-c, FangW-leun. A three-axis CMOS-MEMS accelerometer structure with vertically integrated fully differential sensing electrodes [J]. Journal of Microelecromechanical Systems, 2012, 21(6): 1329-1337

[12]

HathiB, BallA J, ColombattiG, FerriF, LeeseM R, TownerM C, WithersP, FulchigioniM, ZarneckiJ C. Huygens HASI servo accelerometer: A review and lessons learned [J]. Planetary and Space Science, 2009, 57: 1321-1333

[13]

WillemenotE, TouboulP. On-ground investigation of space accelerometers noise with an electrostatic torsion pendulum [J]. Review of Scientific Instruments, 2000, 71(1): 302-309

[14]

YangJ, WuW-q, WuY-x, LianJ-xiang. An iterative calibration method for nonlinear coefficients of marine triaxial accelerometers [J]. Journal of Central South University, 2013, 20: 3103-3115

[15]

XuT-h, SunZ-z, JiangN, ChenK-k, LiMin. GOCE kinematic orbit adjustment for EGM validation and accelerometer calibration [J]. Journal of Central South University, 2014, 21: 2397-2403

[16]

TrusovA A, ZotovS A, SimonB R, ShkelA M. Silicon Accelerometer with differential frequency modulation and continuous self-calibration [C]. IEEE MEMS conference 2013, 2013Taipei, ChinaIEEE Press29-32

[17]

XuR-z, ZhouS-l, LiW J. MEMS accelerometer based nonspecific-user hand gesture recognition [J]. IEEE Sensors Journal, 2012, 12(5): 1166-1173

[18]

IoannisZ, IbrahimS, MichaelK. Characterization of a mechanical motion amplifier applied to a MEMS accelerometer [J]. Journal of Microelectromechanical Systems, 2012, 21(5): 1032-1042

[19]

KulahH, ChaeJ, YazdiN, NajafiK. Noise analysis and characterization of a sigma-delta capacitive microaccelerometer [J]. IEEE Journal of Solid-State Circuits, 2006, 41(2): 352-361

[20]

AaltonenL, HalonenK. Continuous-time interface for a micromachined capacitive accelerometer with NEA of 4 ¦Ìg and bandwidth of 300 Hz [J]. Sensors and Actuators A: Physical, 2009, 154(1): 46-56

[21]

YusakuY, HideakiK, HiroshiA, HiroakiN. A linear model based noise evaluation of a capacitive servo-accelerometer fabricated by MEMS [J]. IEICE Electronics Express, 2005, 2(6): 198-204

[22]

SaitoH, YokoyamaT, UchiyamaS. Seafloor stability monitoring by displacements calculated from acceleration waveforms obtained by a 3-component servo-accelerometer system [C]. Oceans 2006, 2006Boston, MA, USAIEEE Press1-6

[23]

ZhengX D, JinZ H, WangY L, LinW J, ZhouX Q. An in-plane low-noise accelerometer fabricated with an improved process flow [J]. Journal of Zhejiang University, Science A, 2009, 10(10): 1413-1420

[24]

ZhuH, JinZ, HuS, LiuY. Constant-frequency oscillation control for vibratory micro-machined gyroscope [J]. Sensors and Actuators A: Physical, 2013, 193: 193-200

[25]

IEEE Std 1293-1998 R2008.IEEE standard specification format guide and test procedure for linear, single-axis, non-gyroscopic accelerometers [S], 2011

[26]

GulmammadovF. Analysis, modeling and compensation of bias drift in MEMS inertial sensors [C]. 4th International conference on recent advances in space technologies, 2009IstanbulIEEE Press591-596

AI Summary AI Mindmap
PDF

201

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/