Effect of different carbon precursors on properties of LiFePO4/C
Zheng-wei Xiao , Ying-jie Zhang , Guo-rong Hu
Journal of Central South University ›› 2015, Vol. 22 ›› Issue (12) : 4507 -4514.
Effect of different carbon precursors on properties of LiFePO4/C
The anoxic decomposition and influence of carbon precursors on the properties of LiFePO4/C prepared by using Fe2O3 were investigated. X-ray powder diffractometry, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and carbon content and charge–discharge tests were applied to the characterization of the as-synthesized cathodes. Partial carbon is lost in the anaerobic decomposition of organic precursors and a high hydrogen content leads to a high residual carbon rate. Pyromellitic anhydride and citric acid participate in reactions before and in ball-milling. All the chosen carbon precursors are capable of producing LiFePO4 with high degree of crystallinity and purity. The carbon derived from α-D-glucose, pyromellitic anhydride, soluble starch, citric acid and polyacrylamide has a loose and porous texture in LiFePO4/C which forms conduction on and between LiFePO4 particles. LiFePO4/C prepared by using α-D-glucose, pyromellitic anhydride, citric acid and sucrose exhibits appreciable electrochemical performance. Graphite alone is able to enhance the electrochemical performance of LiFePO4 to a limited extent but incapable of preparing practical cathode.
LiFePO4 / lithium ion cell / carbon precursor / decomposition / charge–discharge test / graphite
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
/
| 〈 |
|
〉 |