Analysis of DoD inkjet printhead performance for printable electronics fabrication using dynamic lumped element modeling and swarm intelligence based optimal prediction

Mao-wei He , Li-ling Sun , Kun-yuan Hu , Yun-long Zhu , Han-ning Chen

Journal of Central South University ›› 2015, Vol. 22 ›› Issue (10) : 3925 -3934.

PDF
Journal of Central South University ›› 2015, Vol. 22 ›› Issue (10) : 3925 -3934. DOI: 10.1007/s11771-015-2937-4
Article

Analysis of DoD inkjet printhead performance for printable electronics fabrication using dynamic lumped element modeling and swarm intelligence based optimal prediction

Author information +
History +
PDF

Abstract

The major challenge in printable electronics fabrication is to effectively and accurately control a drop-on-demand (DoD) inkjet printhead for high printing quality. In this work, an optimal prediction model, constructed with the lumped element modeling (LEM) and the artificial bee colony (ABC) algorithm, was proposed to efficiently predict the combination of waveform parameters for obtaining the desired droplet properties. For acquiring higher simulation accuracy, a modified dynamic lumped element model (DLEM) was proposed with time-varying equivalent circuits, which can characterize the nonlinear behaviors of piezoelectric printhead. The proposed method was then applied to investigate the influences of various waveform parameters on droplet volume and velocity of nano-silver ink, and to predict the printing quality using nano-silver ink. Experimental results show that, compared with two-dimension manual search, the proposed optimal prediction model perform efficiently and accurately in searching the appropriate combination of waveform parameters for printable electronics fabrication.

Keywords

piezoelectric inkjet system / lumped element modeling / dynamic model / nano-silver ink / artificial bee colony algorithm

Cite this article

Download citation ▾
Mao-wei He, Li-ling Sun, Kun-yuan Hu, Yun-long Zhu, Han-ning Chen. Analysis of DoD inkjet printhead performance for printable electronics fabrication using dynamic lumped element modeling and swarm intelligence based optimal prediction. Journal of Central South University, 2015, 22(10): 3925-3934 DOI:10.1007/s11771-015-2937-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SinghM, HaverinenH M, DhagatP, JabbourG E. Inkjet printing: Process and its applications [J]. Advanced Materials, 2010, 22: 673-685

[2]

MacdonaldE, SalasR, EspalinD, PerezM, AguileraE, MuseD, WickerR B. 3D printing for the rapid prototyping of structural electronics [J]. IEEE Access, 2014, 2: 234-242

[3]

CheungC L, LooiT, LendvayT S, DrakeJ M, FarhatW A. Use of 3-dimensional printing technology and silicone modeling in surgical simulation: development and face validation in pediatric laparoscopic pyeloplasty [J]. Journal of Surgical Education, 2014, 71(5): 762-767

[4]

JaehyungH, AlanW, AntoineK. Energetics of metal–organic interfaces: New experiments and assessment of the field [J]. Materials Science and Engineering R, 2009, 64: 1-31

[5]

ByungJ K, JeJ H. Geometrical characterization of inkjet-printed conductive lines of nanosilver suspensions on a polymer substrate [J]. Thin Solid Films, 2010, 518: 2890-2896

[6]

VillaniF, VaccaP, NennaG, ValentinoO, BurrascaG, FasolinoT, MinariniC, SalaD J. Inkjet printed polymer layer on flexible substrate for OLED applications [J]. The Journal of Physical Chemistry, 2009, 113(30): 13398-13402

[7]

LiouaJ C, TsengaF. Multi-dimensional data registration CMOS/MEMS integrated inkjet printhead [J]. Journal of Microelectromechanical Systems, 2011, 19(4): 961-972

[8]

MiettinenJ, KaijaK, MantysaloM, MansikkamakiP, KuchikiM, TsubouchiM, RonkkaR, HashizumeK, KamigoriA. Molded substrates for inkjet printed modules [J]. Components and Packaging Technologies, IEEE Transactions on, 2009, 32: 293-301

[9]

SilverbrookKPrinthead with multiple actuators in each chamber: US7708387 B2 [P], 2010

[10]

SangL, HongY, WangF. Investigatin of viscosity effect on droplet formation in T-shaped micro-channels by numerical and analytical methods [J]. Microfluidics and Nanofluidics, 2009, 6: 6621-6635

[11]

LiuJ, TanS, YapY F, NgM Y, NguyenN T. Numerical and experimental investigations of the formation process of ferrofluid droplets [J]. Microfluidics and Nanofluidics, 2011, 11: 177-187

[12]

SarrazinF, LoubiÉReK, PratL, GourdonC, BonomettiT, MagnaudetJ. Experimental and numerical study of droplet hydrodynamics in microchannels [J]. AIChE Journal, 2006, 52(12): 4061-4070

[13]

XingX-q, ButlerD L, NgS H, WangZ-f, DanylukS, YangC. Simulation of droplet formation and coalescence using lattice Boltzmann-based single-phase model [J]. J Colloid Interface, 2007, 311(2): 609-618

[14]

WassinkGInkjet printhead performance enhancement by feedforward input design based on two-port modeling [D], 2007

[15]

SeitzH, HeinzlJ. Modeling of a microfluidic device with piezoelectric actuators [J]. Journal of Micromechanics and Microengineering, 2004, 14: 1140-1147

[16]

REIS N, AINSLEY C, DERBY B. Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors [J]. Journal of Applied Physics, 2005, 97: 094903-1-6.

[17]

ChungJ, KoS, GrigoropoulosC P, BieriN R, DockendorfC, PoulikakosD. Damage-free low temperature pulsed laser printing of gold nanoinks on polymers [J]. Journal of Heat Transfer, 2005, 127(7): 724-732

[18]

KwonK. Waveform design methods for piezo inkjet dispensers based on measured meniscus motion [J]. Journal of Microelectromechanical, Systems, 2009, 18(5): 1118-1125

[19]

GallasQ, HolamanR, NishidaT, CarrollB, SheplakM, CattafestaL. Lumped element modeling of piezoelectricdriven synthetic jet actuators [J]. AIAA Journal, 2003, 41(2): 240-247

[20]

PrasadSTwo-Port electroacoustic model of a piezoelectric composite circular plate [D], 2002Florida, AmericaUniversity of Florida

[21]

BlackstockD TFundamentals of physical acoustics [M], 2000New YorkJohn Wiley & Sons, Inc.145

[22]

WhiteF MFluid mechanics [M], 1979New YorkMcGraw-Hill, Inc.377-379

[23]

KwonK S, KimW. A waveform design method for high-speed inkjet printing based on self-sensing measurement [J]. Sensors and Actuators A: Physical, 2007, 140(1): 75-83

[24]

GanH Y, ShanX, ErikssonT, LokB K, LamY C. Reduction of droplet volume by controlling actuating waveforms in inkjet printing for micro-pattern formation [J]. Journal of Micromechanics and Microengineering, 2009, 19(5): 055010

[25]

Konica minolta inkjet head application note-KM1024 series [R]. Tokyo, Japan: Konica Minolta IJ Technologies. Inc, 2009.

[26]

KarabogaDAn idea based on honey bee swarm for numerical optimization [R], 2005Kayseri, TurkeyComputer Engineering Department, Engineering Faculty, Erciyes University

[27]

KarabogaD, BasturkB. On the performance of artificial bee colony (ABC) [J]. Applied Soft Computing, 2008, 8(1): 687-697

[28]

PiefortVFinite element modelling of piezoelectric active structures [R], 2001Bruxelles, BelgiumDissertation, Department of Mechanical Engineering and Robotics, Universite Libre de Bruxelles

[29]

ConstantinescuF, GheorgheA G, NitescuMNew circuit models of power BAW resonators [C], 2007599-603

[30]

AlbaredaA, PÉRezR. Non-linear behaviour of piezoelectric ceramics [J]. Springer Series in Materials Science, 2011, 140: 681-726

[31]

GolubG, PereyraV. Separable nonlinear least squares: The variable projection method and its applications [J]. Inverse Problems, 2003, 19: R1-R26

[32]

WijshoffH. The dynamics of the piezo inkjet printhead operation [J]. Physics Reports, 2010, 491(4/5): 77-177

AI Summary AI Mindmap
PDF

200

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/