Through-thickness inhomogeneity of localized corrosion in 7050-T7451 Al alloy thick plate

Lei Feng , Qing-lin Pan , Li-li Wei , Zhi-qi Huang , Zhi-ming Liu

Journal of Central South University ›› 2015, Vol. 22 ›› Issue (7) : 2423 -2434.

PDF
Journal of Central South University ›› 2015, Vol. 22 ›› Issue (7) : 2423 -2434. DOI: 10.1007/s11771-015-2769-2
Article

Through-thickness inhomogeneity of localized corrosion in 7050-T7451 Al alloy thick plate

Author information +
History +
PDF

Abstract

The through-thickness corrosion inhomogeneity of 7050-T7451 Al alloy thick plate was studied using immersion tests, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), slow strain rate testing (SSRT) technique combined with optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that the through-thickness corrosion resistance is ranked in the order of T/2>surface>T/4. And the 75 mm-thick 7050 alloy plate presents better corrosion resistance than the 35 mm-thick plate. The results are discussed in terms of the combined effect of recrystallization and cooling rate in quenching. Alloy with lower volume fraction of recrystallization and smaller grain aspect ratio displays better corrosion resistance. The lower corrosion resistance caused by the slower cooling rate results from the higher coverage rate of grain boundary precipitates and larger width of precipitate free zone.

Keywords

aluminium / polarization / electrochemical impedance spectroscopy (EIS) / intergranular corrosion / exfoliation corrosion / stress corrosion

Cite this article

Download citation ▾
Lei Feng, Qing-lin Pan, Li-li Wei, Zhi-qi Huang, Zhi-ming Liu. Through-thickness inhomogeneity of localized corrosion in 7050-T7451 Al alloy thick plate. Journal of Central South University, 2015, 22(7): 2423-2434 DOI:10.1007/s11771-015-2769-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

WilliamsJ C, StarkeE AJr. Progress in structural materials for aerospace systems [J]. Acta Mater, 2003, 51: 5775-5799

[2]

PanigrahiS K, JayaganthanR. Effect of aging on microstructure and mechanical properties of bulk, cryorolled, and room temperature rolled Al 7075 alloy [J]. J Alloys Compd, 2011, 509: 9609-9616

[3]

CondeA, FernandezB J, de DamboreneaJ. Characterization of the SCC behaviour of 8090 Al-Li alloy by means of the slow-strain-rate technique [J]. Corros Sci, 1998, 40: 91-102

[4]

NajjarD, MagninT, WarnerT J. Influence of critical surface defects and localized competition between anodic dissolution and hydrogen effects during stress corrosion cracking of a 7050 aluminium alloy [J]. Mater Sci Eng A, 1997, 238: 293-302

[5]

FangH-c, ChenK-h, ChaoH, ChenX, YeD-feng. Current research status and prespects of ultra strength Al-Zn-Mg-Cu aluminium alloy [J]. Materials Science and Engineering of Powder Metallurgy, 2009, 14: 352-358

[6]

WangH, FuG-f, SunJ-hong. Present research and developing trends of ultra high strength aluminium alloys [J]. Mater Review, 2006, 20: 58-60

[7]

SarkarB, MarekM, StarkeE. Effect of copper content and heat treatment on the stress corrosion characteristics of Al-6Zn-2Mg-xCu alloys [J]. Metall Trans A, 1981, 12: 1939-1943

[8]

OuB-l, YangJ-g, YangC-kuo. Effects of step-quench and aging on mechanical properties and resistance to stress corrosion cracking of 7050 aluminum alloy [J]. Mater Trans, 2000, 41: 783-789

[9]

Bobby KannanM, RajaV S. Enhancing stress corrosion cracking resistance in Al-Zn-Mg-Cu-Zr alloy through inhibiting recrystallization [J]. Eng Fract Mech, 2010, 77: 249-256

[10]

WangD, NiD R, MaZ Y. Effect of pre-strain and two-step aging on microstructure and stress corrosion cracking of 7050 alloy [J]. Mater Sci Eng A, 2008, 494: 360-366

[11]

RedaY, Abdel-karimR, ElmahallawiI. Improvements in mechanical and stress corrosion cracking properties in Al-alloy 7075 via retrogression and reaging [J]. Mater Sci Eng A, 2008, 485A: 468-475

[12]

SongR G, DietzelW, ZhangB J, LiuW J, TsengM K, AtrensA. Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu alloy [J]. Acta Mater, 2004, 52: 4727-4743

[13]

WlokaJ, BurklinG, VirtanenS. Influence of second phase particles on initial electrochemical properties of AA7010-T76 [J]. Electrochim Acta, 2007, 53: 2055-2059

[14]

KimS H, ErbU, AustK T, PalumboG. Grain boundary character distribution and intergranular corrosion behavior in high purity aluminum [J]. Scripta Mater, 2001, 44: 835-839

[15]

PengG-s, ChenK-h, ChenS-y, FangH-chan. Influence of dual retrogression and re-aging temper on microstructure, strength and exfoliation corrosion behavior of Al-Zn-Mg-Cu alloy [J]. Transactions of Nonferrous Metals Society of China, 2012, 22: 803-809

[16]

SinyavskiivS, UlanovaV V, KalininV D. On the mechanism of intergranular corrosion of aluminum alloys [J]. Protection of Metals, 2004, 40: 537-546

[17]

PengG-s, ChenK-h, FangH-chan. The effect of recrystallization on corrosion and electrochemical behavior of 7150 Al alloy [J]. Mater Corros, 2009, 60: 1-6

[18]

FanX-g, JiangD-m, ZhongL, WangT, RenS-yu. Influence of microstructure on the crack propagation and corrosion resistance of Al-Zn-Mg-Cu alloy 7150 [J]. Mater Charact, 2007, 58: 24-28

[19]

SongF-x, ZhangX-m, LiuS-d, HanN-m, LiD-feng. Anisotropy of localized corrosion in 7050-T7451 Al alloy thick plate [J]. Transactions of Nonferrous Metals Society of China, 2013, 23: 2483-2490

[20]

GB/T 22639-2008. National standard of China. Test method of exfoliation corrosion for wrought aluminum and aluminum alloys [S].

[21]

GB 7998-2005. National standard of China. Test method for intergranular corrosion of aluminum alloys [S].

[22]

GB 15970. 7-2000. National standard of China. Corrosion of metals and alloys-stress corrosion testing -slow strain rate testing [S].

[23]

HuJ, XuL X, YaoC K. Location corrosion of alumina borate whisker reinforced AA2024 T6 composite in aqueous 3.5% NaCl solution [J]. Mater Chem Phys, 2002, 76: 290-294

[24]

LiJ F, JiaZ Q, LiC X, BirbilisN, CaiC. Exfoliation corrosion of 7150 Al alloy with various tempers and its electrochemical impedance spectroscopy in EXCO solution [J]. Mater Corros, 2009, 60: 407-414

[25]

MoreiraA H, BenedettiA V, SumodjoP T A, GarridoJ A, CabotP L. Electrochemical behaviour of heat-treated Al-Zn-Mg alloys in chloride solutions containing sulphate [J]. Electrochim Acta, 2002, 47: 2823-2831

[26]

CondeA, de DamboreneaJ. Evaluation of exfoliation susceptibility by means of the electrochemical impedance spectroscopy [J]. Corros Sci, 2000, 42: 1363-1377

[27]

CondeA, de DamboreneaJ. Electrochemical modelling of exfoliation corrosion behaviour of 8090 alloy [J]. Electrochim Acta, 1998, 43: 849-860

[28]

XiaoY-p, PanQ-l, LiW-b, LiuX-y, HeY-bin. Influence of retrogression and re-aging treatment on corrosion behaviour of an Al-Zn-Mg-Cu alloy [J]. Mater Des, 2011, 32: 2149-2156

[29]

BrunnerJ G, BirbilisN, RalstonK D, VirtanenS. Impact of ultrafine-grained microstructure on the corrosion of aluminium alloy AA2024 [J]. Corros Sci, 2012, 57: 209-214

[30]

ChenS-y, ChenK-h, PengG-s, JiaL, DongP-xuan. Effect of heat treatment on strength, exfoliation corrosion and electrochemical behavior of 7085 aluminum alloy [J]. Mater Des, 2012, 35: 93-98

[31]

SongF-x, ZhangX-m, LiuS-d, TanQ, LiD-feng. The effect of quench rate and overaging temper on the corrosion behaviour of AA7050 [J]. Corros Sci, 2014, 78: 276-286

[32]

ChenS-y, ChenK-h, DongP-x, YeS-p, HuangL-ping. Effect of recrystallization and heat treatment on strength and SCC of an Al-Zn-Mg-Cu alloy [J]. J Alloys Compd, 2013, 581: 705-709

[33]

PuiggaliM, ZielinskiA, OliveJ, RenauldE, DesjardinsD, CidM. Effect of microstructure on stress corrosion cracking of an Al-Zn-Mg-Cu alloy [J]. Corros Sci, 1998, 40: 805-819

[34]

TsaiT C, ChuangT H. Role of grain size on the stress corrosion cracking of 7475 aluminum alloys [J]. Mater Sci Eng A, 1997, 225: 135-144

AI Summary AI Mindmap
PDF

94

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/