PDF
Abstract
The structural, elastic and electronic properties of Cu-X compounds in the Cu-X (X =Al, Be, Mg, Sn, Zn and Zr) systems were predicted systematically by first-principles calculations. The ground state properties such as lattice constant, bulk modulus (B) and it’s pressure derivative (B′) were predicted by fitting a four-parameter Birch-Murnaghan equation and the elastic constants (cij’s) are determined by an efficient strain-stress method. The calculated lattice parameters and cij’s of these binary compounds agree well with the available experimental data in the literature. In addition, elastic properties of polycrystalline aggregates including bulk modulus (B), shear modulus (G), elastic modulus (E), B/G (bulk/shear) ratio, and anisotropy ratio (AU) are calculated and compared with the experimental and theoretical results available in the literature. Based on electronic density of states (DOS) analysis, it can be revealed that all the compounds in the present work are metallic in nature.
Keywords
Cu-X compounds
/
structural properties
/
elastic properties
/
electronic properties
/
first-principles
Cite this article
Download citation ▾
Yang Liu, Jiong Wang, Qian-nan Gao, Yong Du.
Structural, elastic and electronic properties of Cu-X compounds from first-principles calculations.
Journal of Central South University, 2015, 22(5): 1585-1594 DOI:10.1007/s11771-015-2675-7
| [1] |
BauschlicherC WJr, RiccaA. The low-lying electronic states of Ycu [J]. Chemical physics, 1995, 200(3): 337-345
|
| [2] |
KuriplachJ, DivišM. Crystal field in rare earth intermetallics with CsCl structure [J]. Physica B, 1995, 205(3/4): 353-364
|
| [3] |
SundareswariM, Khadeer PashaS, RajagopalanM. Ab initio study of the electronic structure of some B2 intermetallic compounds [J]. Physica B, 2004, 348(1/2/3/4): 206-212
|
| [4] |
GschneidnerK AJr, JiM, WangC Z, HoK M, RussellA M, MudrykY A, BeckerA T, LarsonJ L. Influence of the electronic structure on the ductile behavior of B2 CsCl-type AB intermetallics [J]. Acta Materialia, 2009, 57(19): 5876-5881
|
| [5] |
LiX-f, FuH-z, LiuW-f, MaY-m, GaoT, HongX-hua. Electronic and dynamical properties of NiAl studied from first principles [J]. Intermetallics, 2011, 19(12): 1959-1967
|
| [6] |
ChouhanS S, SoniP, PagareG, SanyalS P, RajagopalanM. Ab-initio study of electronic and elastic properties of B2-type ductile YM (M=Cu, Zn and Ag) intermetallics [J]. Physica B, 2011, 406(3): 339-344
|
| [7] |
HangC J, WangC Q, MayerM, TianY H, ZhouY, WangH H. Growth behavior of Cu/Al intermetallic compounds and cracks in copper ball bonds during isothermal aging [J]. Microelectronics Reliability, 2008, 48(3): 416-424
|
| [8] |
VaugheyJ T, KeplerK D, ThackerayM M. Copper-tin anodes for rechargeable lithium batteries: An example of the matrix effect in an intermetallic system [J]. Journal of Power Sources, 1999, 81/82: 383-387
|
| [9] |
BrownL D, FineM E, MarcusH L. Elastic constants versus melting temperature in metals [J]. Scripta Metallurgica, 1984, 18(9): 951-956
|
| [10] |
PughS F. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals [J]. Philosophical Magazine, 1954, 45(367): 823-843
|
| [11] |
PettiforD G. Theoretical predictions of structure and related properties of intermetallics [J]. Materials Science and Technology, 1992, 8(4): 345-349
|
| [12] |
JhiS H, IhmJ, LouieS G, CohenS L. Electronic mechanism of hardness enhancement in transition-metal carbonitrides [J]. Nature, 1999, 399(6732): 132-134
|
| [13] |
GhoshG. First-principles calculations of structural energetics of Cu-TM (TM=Ti, Sr, Hf) intermetallics [J]. Acta Materialia, 2007, 55(10): 3347-3374
|
| [14] |
GuoQ, ZhangL, Zeiger AdamS, LiY, Van Vliet KrystynJ, Thompson CarlV. Compositional dependence of Young’s moduli for amorphous Cu-Zr films measured using combinatorial deposition on microscale cantilever arrays [J]. Scripta Materialia, 2011, 64(1): 41-44
|
| [15] |
DebiaggiS R, DeluqueT C, CabezaG F, GuillermetA F. Ab initio comparative study of the Cu-In and Cu-Sn intermetallic phases in Cu-In-Sn alloys [J]. Journal of Alloys and Compounds, 2012, 542: 280-292
|
| [16] |
WangJ, ShangS-l, WangY, MeiZ-g, LiangY-f, DuY, LiuZ-kui. First-principles calculations of binary Al compounds: Enthalpies of formation and elastic properties [J]. Calphad, 2011, 35(4): 562-573
|
| [17] |
ShangS-l, SaengdeejingA, MeiZ G, KimD E, ZhangH, GaneshanS, WangY, LiuZ-kui. First-principles calculations of pure elements: Equations of state and elastic stiffness constants [J]. Computational Materials Science, 2010, 48(4): 813-826
|
| [18] |
GaneshanS, ShangS-l, ZhangH, WangY, MantinaM, LiuZ-kui. Elastic constants of binary Mg compounds from first-principles calculations [J]. Intermetallics, 2009, 17(5): 313-318
|
| [19] |
LiuF-z, JiaS-guoCopper alloy and its application [M], 2007, Beijing, Chemical Industry Press
|
| [20] |
FurthmüllerJ, KresseG. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Computational Materials Science, 1996, 6(1): 15-50
|
| [21] |
FurthmüllerJ, KresseG. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169
|
| [22] |
ShangS-l, WangY, KimD E, LiuZ-kui. First-principles thermodynamics from phonon and Debye model: Application to Ni and Ni3Al [J]. Computational Materials Science, 2010, 47(4): 1040-1048
|
| [23] |
ShangS-l, WangY, LiuZ-kui. First-principles elastic constants of α- and θ-Al2O3 [J]. Applied Physics Letters, 2007, 90(10): 101909
|
| [24] |
ShamL J, KohnW. Self-consistent equations including exchange and correlation effects [J]. Physical Review, 1965, 140(4A): A1133
|
| [25] |
JepsenO, BlöchlP E, AndersenO K. Improved tetrahedron method for Brillouin-zone integrations [J]. Physical Review B, 1994, 49(23): 16223
|
| [26] |
PerdewJ P, BurkeK, ErnzerhofM. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865-3868
|
| [27] |
PaxtonA T, MethfesselM. High-precision sampling for Brillouin-zone integration in metals [J]. Physical Review B, 1989, 40(6): 3616
|
| [28] |
PackJ D, MonkhorstH J. Special points for Brillouin-zone integrations [J]. Physical Review B, 1976, 13(12): 5188-5192
|
| [29] |
HillR. The elastic behaviour of a crystalline aggregate [J]. Proceedings of the Physical Society: Section A, 1952, 65(5): 349
|
| [30] |
WangH, SimmonsGSingle crystal elastic constants and calculated aggregate properties: A handbook [M], 1971, Cambridge, M.I.T. Press
|
| [31] |
CalvertL D, VillarsPPearson’s handbook of crystallographic data for intermetallic phases [M], 1991, Materials Park, ASM International
|
| [32] |
ChengC H. The elastic constants of MgAg and MgCu2 single crystals [J]. Journal of Physics and Chemistry of Solids, 1967, 28(3): 413-416
|
| [33] |
SmithJ F, EshelmanF R. Single-crystal elastic constants of Al2Cu [J]. Journal of Applied Physics, 1978, 49(6): 3284-3288
|
| [34] |
ShibutaniY, WakedaM, OgataS, ParkJ. Relationship between local geometrical factors and mechanical properties for Cu-Zr amorphous alloys [J]. Intermetallics, 2007, 15(2): 139-144
|
| [35] |
LiuL-j, ZhouW, LiB-l, SongQ-g, WuPing. Structural, elastic, and electronic properties of Al-Cu intermetallics from first-principles calculations [J]. Journal of Electronic Materials, 2009, 38: 356-364
|
| [36] |
LiuL-j, ZhouW, WuPing. Structural, electronic and thermo-elastic properties of Cu6Sn5 and Cu5Zn8 intermetallic compounds: First-principles investigation [J]. Intermetallics, 2010, 18(5): 922-928
|
| [37] |
NyeJ FPhysical properties of cristals: Their representation by tensors and matrices [M], 1985, New York, Oxford University Press
|
| [38] |
HuangK, BornMDynamical theory of crystal lattices [M], 1988, Oxford, Clarendon Press
|
| [39] |
ZhangH, ShangS L, WangY, SaengdeejingA, ChenL Q, LiuZ K. First-principles calculations of the elastic, phonon and thermodynamic properties of Al12Mg17 [J]. Acta Materialia, 2010, 58(11): 4012-4018
|
| [40] |
Ostoja-StarzewskiM, RanganathanS I. Universal elastic anisotropy index [J]. Physical Review Letters, 2008, 101(5): 055504
|
| [41] |
FuC L, WangX D, YeY Y, HoK M. Phase stability, bonding mechanism, and elastic constants of Mo5Si3 by first-principles calculation [J]. Intermetallics, 1999, 7(2): 179-184
|
| [42] |
NylénJ, GarcìaF J, MoselB D, PöttgenR, HäussermannU. Structural relationships, phase stability and bonding of compounds PdSnn (n=2, 3, 4) [J]. Solid State Sciences, 2004, 6(1): 147-155
|