Mechanism of stibnite volatilization at high temperature

Wen-qing Qin , Hong-lin Luo , Wei Liu , Yong-xing Zheng , Kang Yang , Jun-wei Han

Journal of Central South University ›› 2015, Vol. 22 ›› Issue (3) : 868 -873.

PDF
Journal of Central South University ›› 2015, Vol. 22 ›› Issue (3) : 868 -873. DOI: 10.1007/s11771-015-2595-6
Article

Mechanism of stibnite volatilization at high temperature

Author information +
History +
PDF

Abstract

The volatilization of stibnite (Sb2S3) in nitrogen from 700 to 1000 °C was investigated by using thermogravimetric analysis. The results indicate that in inert atmosphere, stibnite can be volatilized most efficiently as Sb2S3 (g) at a linear rate below 850 °C, with activation energy of 137.18 kJ/mol, and the reaction rate constant can be expressed as k=206901exp(−16.5/T). Stibnite can be decomposed into Sb and sulfur at temperature above 850 °C in a nitrogen atmosphere. However, in the presence of oxygen, stibnite is oxidized into Sb and SO2 gas at high temperature. Otherwise, Sb is oxidized quickly into antimony oxides such as Sb2O3 and SbO2, while Sb2O3 can be volatilized efficiently at high temperature.

Keywords

stibnite / volatilization / nitrogen / thermogravimetric analysis

Cite this article

Download citation ▾
Wen-qing Qin, Hong-lin Luo, Wei Liu, Yong-xing Zheng, Kang Yang, Jun-wei Han. Mechanism of stibnite volatilization at high temperature. Journal of Central South University, 2015, 22(3): 868-873 DOI:10.1007/s11771-015-2595-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AweS A, Sandstrom. Electrowinning of antimony from model sulphide alkaline solutions [J]. Hydrometallurgy, 2013, 137(5): 60-67

[2]

MahlanguT, GudyangaF P, SimbiD J. Reductive leaching of stibnite (Sb2S3) flotation concentrate using metallic iron in a hydrochloric acid medium I: Thermodynamics [J]. Hydrometallurgy, 2006, 84(2): 192-203

[3]

AndersonC G. The metallurgy of antimony [J]. Chemie der Erde-Geochemistry, 2012, 72(4): 3-8

[4]

MinzF, BolinN, LambergP, WanhainenC. Detailed characterisation of antimony mineralogy in a geometallurgical context at the Rockliden ore deposit North-Central Sweden [J]. Miner Engineering, 2013, 32(7): 148-152

[5]

AweS A, SundkvistJ, BolinN, Sandstrom. Process flowsheet development for recovering antimony from Sb-bearing copper concentrates [J]. Miner Engineering, 2013, 49(2): 45-53

[6]

YangJ-g, TangC-b, ChenY-m, TangM-tang. Separation of antimony from a stibnite concentrate through a low-temperature smelting process to eliminate SO2 emission [J]. Metallurgical and Materials Transactions B, 2011, 42(2): 30-36

[7]

LagerT, ForssbergK S E. Current processing technology for antimony-bearing ores: A review, part 2 [J]. Miner Engineering, 1989, 2: 543-556

[8]

ChenY-m, HuangC, TangM-t, YaoW-y, TangC-b, PiG-hua. Production of antimony by directly reducing-matting smelting of stibnite concentrate [J]. The Chinese Journal of Nonferrous Metals, 2005, 15(7): 1311-1316

[9]

TangM-t, JinG-zhong. Industrial experiment on the volatilization-matte making smelting of antimony concentrate bearing high copper in blast furnace [J]. The Chinese Journal of Nonferrous Metals, 2007, 48(3): 34-36

[10]

BalazP, AchimovicovaM, FiceriovaJ, KammelR, ŠepelakV. Leaching of antimony and mercury from mechanically activated tetrahedrite Cu12Sb4S13 [J]. Hydrometallurgy, 1998, 47(3): 297-307

[11]

UbaldiniS, VeglioF, FomariP, AbbruzzeseC. Process flow-sheet for gold and antimony recovery from stibnite [J]. Hydrometallurgy, 2000, 57(13): 187-199

[12]

RiverosP A. The removal of antimony from copper electrolytes using amino-phosphonic resins: Improving the elution of pentavalent antimony [J]. Hydrometallurgy, 2010, 105(5): 110-114

[13]

CelepO, AlpI, DeveciH. Improved gold and silver extraction from a refractory antimony ore by pretreatment with alkaline sulphide leach [J]. Hydrometallurgy, 2011, 105(3): 234-239

[14]

YangJ-g, YangS-h, TangC-bo. The membrane electrowinning separation of antimony from a stibnite concentrate [J]. Metallurgical and Materials Transactions B, 2010, 41(7): 527-534

[15]

ZivkovicZ, StrbacN, ZivkovicD, GrujicicD, BoyanovB. Kinetics and mechanism of Sb2S3 oxidation process [J]. Thermochim Acta, 2002, 383(1): 137-143

[16]

HuaY-x, YangY, ZhuF-liang. Volatilization kinetics of Sb2S3 in steam atmosphere [J]. Journal of Materials Sciences and Technology, 2003, 6(3): 619-622

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/