Corrosion behavior of 907 steel under thin electrolyte layers of artificial seawater

Hui-ping Wang , Shao-chun Ding , Juan Zhu , Zhao Zhang , Jian-qing Zhang , Chu-nan Cao

Journal of Central South University ›› 2015, Vol. 22 ›› Issue (3) : 806 -814.

PDF
Journal of Central South University ›› 2015, Vol. 22 ›› Issue (3) : 806 -814. DOI: 10.1007/s11771-015-2586-7
Article

Corrosion behavior of 907 steel under thin electrolyte layers of artificial seawater

Author information +
History +
PDF

Abstract

The corrosion behavior of 907 steel under thin electrolyte layer (TEL) has been investigated by means of cathodic polarization curve measurement, electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). The results show that the cathodic diffusion current density presents the variation trend of initial increase and subsequent decrease with the decrease of TEL thickness, and the maximum deposits at 58 μm. The cotangent-hyperbolic impedance (O) is rationally first introduced to study the diffusion process of the reactants through the corrosion products layer with many permeable holes. The initial corrosion rate of 907 steel under different TEL thickness increases with the decrease of TEL thickness except that of 104 μm, whereas the corrosion rate after long time corrosion can be ranked as 104 μm>402 μm>198 μm>301 μm >bulk solution.

Keywords

907 steel / atmospheric corrosion / electrochemical impedance spectroscopy / polarization

Cite this article

Download citation ▾
Hui-ping Wang, Shao-chun Ding, Juan Zhu, Zhao Zhang, Jian-qing Zhang, Chu-nan Cao. Corrosion behavior of 907 steel under thin electrolyte layers of artificial seawater. Journal of Central South University, 2015, 22(3): 806-814 DOI:10.1007/s11771-015-2586-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

KatayamaH, NodaK, MasudaH, NagasawaM, ItagakiM, WatanabeK. Corrosion simulation of carbon steels in atmospheric environment [J]. Corrosion Science, 2005, 47(10): 2599-2606

[2]

HanW, YuG-c, WangZ-y, WangJun. Characterisation of initial atmospheric corrosion carbon steels by field exposure and laboratory simulation [J]. Corrosion Science, 2007, 49(7): 2920-2935

[3]

AbreuC M, CristóbalM J, NpóvoaX R, PenaG, PérezM C. Electrochemical behaviour of an AISI 304L stainless steel implanted with nitrogen [J]. Electrochimica Acta, 2008, 53(20): 6000-6007

[4]

XuJ, WuX-q, HanE-H. The evolution of electrochemical behaviour and oxide film properties of 304 stainless steel in high temperature aqueous environment [J]. Electrochimica Acta, 2012, 71: 219-226

[5]

OhS J, CookD C, TownsendH E. Atmospheric corrosion of different steels in marine, rural and industrial environments [J]. Corrosion Science, 1999, 41(9): 1687-1702

[6]

HouW, LiangC. Eight-year atmospheric corrosion exposure of steels in China [J]. Corrosion, 1999, 55(1): 65-73

[7]

MansfeldF, TsaiS. Laboratory studies of atmospheric corrosion-I. Weight loss and electrochemical measurements [J]. Corrosion Science, 1980, 20(7): 853-872

[8]

MansfeldF. Atmospheric corrosion rates, time-of-wetness and relative humidity [J]. Materials and Corrosion, 1979, 30(1): 38-42

[9]

StratmannM, StreckelH. On the atmospheric corrosion of metals which are covered with thin electrolyte layers-I. Verification of the experimental technique [J]. Corrosion Science, 1990, 30(6/7): 681-696

[10]

StratmannM, StreckelH. On the atmospheric corrosion of metals which are covered with thin electrolyte layers-II. Experimental results [J]. Corrosion Science, 1990, 30(6/7): 697-714

[11]

StratmannM, StreckelH, KimK T, CrockettS. On the atmospheric corrosion of metals which are covered with thin electrolyte layers-III. The measurement of polarisation curves on metal surfaces which are covered by thin electrolyte layers [J]. Corrosion Science, 1990, 30(6/7): 715-734

[12]

CoxA, LyonS B. An electrochemical study of the atmospheric corrosion of mild steel-I. Experimental method [J]. Corrosion Science, 1994, 36(7): 1167-1176

[13]

NishikataA, IchiharaY, TsuruT. An application of electrochemical impedance spectroscopy to atmospheric corrosion study [J]. Corrosion Science, 1995, 37(6): 897-911

[14]

FrankelG S, StratmannM, RohwerderM, MichalikA, MaierB, DoraJ, WicinskiM. Potential control under thin aqueous layers using a Kelvin Probe [J]. Corrosion Science, 2007, 49(4): 2021-2036

[15]

ChengY-l, ZhangZ, CaoF-h, LiJ-f, ZhangJ-q, WangJ-m, CaoC-nan. A study of the corrosion of aluminum alloy 2024-T3 under thin electrolyte layers [J]. Corrosion Science, 2004, 46(7): 1649-1667

[16]

LiuW-j, CaoF-h, ChenA-n, ChangL-r, ZhangJ-q, CaoC-nan. Corrosion behaviour of AM60 magnesium alloys containing Ce or La under thin electrolyte layers. Part 1: Microstructural characterization and electrochemical behaviour [J]. Corrosion Science, 2010, 52(2): 627-638

[17]

LiaoX-n, CaoF-h, ZhengL-y, LiuW-j, ChenA-n, ZhangJ-q, CaoC-nan. Corrosion behaviour of copper under chloride-containing thin electrolyte layer [J]. Corrosion Science, 2011, 53(10): 3289-3298

[18]

ZhangT, ChenC-m, ShaoY-w, MengG-z, WangF-h, LiX-g, DongC-fang. Corrosion of pure magnesium under thin electrolyte layers [J]. Electrochimica Acta, 2008, 53(27): 7921-7931

[19]

ZhouH R, LiX G, MaJ, DongC F, HuangY Z. Dependence of the corrosion behavior of aluminum alloy 7075 on the thin electrolyte layers [J]. Materials Science and Engineering B, 2009, 162(1): 1-8

[20]

ZhengL-y, CaoF-h, LiuW-j, JiaB-l, ZhangJ-qing. Corrosion behavior of Pure zinc and its alloy under thin electrolyte layer [J]. Acta Metallurgica Sinica (English Letters), 2010, 23(6): 416-430

[21]

HuangH-l, DongZ-h, ChenZ-y, GuoX-peng. The effects of Cl ion concentration and relative humidity on atmospheric corrosion behaviour of PCB-Cu under adsorbed thin electrolyte layer [J]. Corrosion Science, 2011, 53(4): 1230-1236

[22]

SinghD D N, YadavS, SahaJ K. Role of climatic conditions on corrosion characteristics of structural steels [J]. Corrosion Science, 2008, 50(1): 93-110

[23]

MaY-t, LiY, WangF-hui. Corrosion of low carbon steel in atmospheric environments of different chloride content [J]. Corrosion Science, 2009, 51(5): 997-1006

[24]

CastañoJ G, BoteroC A, RestrepoA H, AgudeloE A, CorreaE, EcheverríaF. Atmospheric corrosion of carbon steel in Colombia [J]. Corrosion Science, 2010, 52(1): 216-223

[25]

SyedS. Atmospheric corrosion of carbon steel at marine sites in saudi arabia [J]. Materials and Corrosion, 2010, 61(3): 238-244

[26]

WangZ-f, LiuJ-r, WuL-x, HanR-d, SunY-qiang. Study of the corrosion behavior of weathering steels in atmospheric environments [J]. Corrosion Science, 2013, 67: 1-10

[27]

CruzR P V, NishikataA, TsuruT. AC impedance monitoring of pitting corrosion of stainless steel under a wet-dry cyclic condition in chloride-dontaining environment [J]. Corrosion Science, 1996, 38(8): 1397-1406

[28]

NishikataA, YamashitaY, KatayamaH, TsuruT, UsamiA, TanabeK, MabuchiH. An electrochemical impedance study on atmospheric corrosion of steels in a cyclic wet-dry condition [J]. Corrosion Science, 1995, 37(12): 2059-2069

[29]

NishikataA, IchiharaY, TsuruT. Electrochemical impedance spectroscopy of metals covered with a thin electrolyte layer [J]. Electrochimica Acta, 1996, 41(7/8): 1057-1062

[30]

NishikataA, IchiharaY, HayashiY, TsuruT. Influence of electrolyte layer thickness and pH on the initial stage of the atmospheric corrosion of iron [J]. Journal of the Electrochemical Society, 1997, 144(4): 1244-1252

[31]

ChungK-W, KimK-B. A study of the effect of concentration build-up of electrolyte on the atmosphericcorrosion of carbonsteel during drying [J]. Corrosion Science, 2000, 42(3): 517-531

[32]

DubuissonE, LavieP, DalardF, CaireJ-P, SzuneritsS. Study of the atmospheric corrosion of galvanised steel in a micrometric electrolytic droplet [J]. Electrochemistry Communications, 2006, 8(6): 911-915

[33]

HuangH-l, GuoX-p, ZhangG-a, DongZ-hua. The effects of temperature and electric field on atmospheric corrosion behaviour of PCB-Cu under absorbed thin electrolyte layer [J]. Corrosion Science, 2011, 53(5): 1700-1707

[34]

CaoC-nan. Estimation of electrochemical kinetic parameters of corrosion processes by weak polarization curve fitting [J]. Journal of Chinese Society for Corrosion and Protection, 1985, 5(3): 155-164

[35]

GuoH-t, TanQ-xianstudy of the electrochemistry [M], 2000, Tianjin, Tianjin University Press: 225

[36]

CampestriniP, WestingE P M, WitJ H W. Influence of surface preparation on performance of chromate conversion coatings on Alclad 2024 aluminium alloy. Part II: EIS investigation [J]. Electrochimica Acta, 2001, 46(17): 2631-2647

[37]

LiuC, BiQ, LeylandA, MatthewsA. An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution. Part II: EIS interpretation of corrosion behaviour [J]. Corrosion Science, 2003, 45(6): 1257-1273

[38]

ShaoH-boElectrochemical behavior and inhibitors of aluminum in alkaline solutions [D], 2004, Hangzhou, Zhejiang University

[39]

Ei-mahdyG A, NishikataA, TsuruT. AC impedance study on corrosion of 55%Al-Zn alloy-coated steel under thin electrolyte layers [J]. Corrosion Science, 2000, 42(9): 1509-1521

[40]

LorenzW J, MansfeldF. Determination of corrosion rates by electrochemical DC and AC methods [J]. Corrosion Science, 1981, 21(9/10): 647-672

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/