Boundary layer flow of third grade nanofluid with Newtonian heating and viscous dissipation
S. A. Shehzad , Tariq Hussain , T. Hayat , M. Ramzan , A. Alsaedi
Journal of Central South University ›› 2015, Vol. 22 ›› Issue (1) : 360 -367.
Boundary layer flow of third grade nanofluid with Newtonian heating and viscous dissipation
Two-dimensional boundary layer flow of an incompressible third grade nanofluid over a stretching surface is investigated. Influence of thermophoresis and Brownian motion is considered in the presence of Newtonian heating and viscous dissipation. Governing nonlinear problems of velocity, temperature and nanoparticle concentration are solved via homotopic procedure. Convergence is examined graphically and numerically. Results of temperature and nanoparticle concentration are plotted and discussed for various values of material parameters, Prandtl number, Lewis number, Newtonian heating parameter, Eckert number and thermophoresis and Brownian motion parameters. Numerical computations are performed. The results show that the change in temperature and nanoparticle concentration distribution functions is similar when we use higher values of material parameters β1 and β2. It is seen that the temperature and thermal boundary layer thickness are increasing functions of Newtonian heating parameter γ. An increase in thermophoresis and Brownian motion parameters tends to an enhancement in the temperature.
third grade nanofluid / Newtonian heating / viscous dissipation
| [1] |
CHOI SUS.. Enhancing thermal conductivity of fluids with nanoparticles [J]. ASME MD 231, 1995, 66: 99-105 |
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
RASHIDI M M, MOMONIAT E, ROSTAMI B. Analytic approximate solutions for MHD boundary-layer visco-elastic fluid flow over continuously moving stretching surface by homotopy analysis method with two auxiliary parameters [J]. Journal of Applied Mathematics, 2012, 780415. |
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
/
| 〈 |
|
〉 |