Solution combustion synthesis of Fe-Ni-Y2O3 nanocomposites for magnetic application

Ye Liu , Ming-li Qin , Lin Zhang , Bao-rui Jia , Peng-qi Chen , De-zhi Zhang , Xuan-hui Qu

Journal of Central South University ›› 2015, Vol. 22 ›› Issue (1) : 23 -29.

PDF
Journal of Central South University ›› 2015, Vol. 22 ›› Issue (1) : 23 -29. DOI: 10.1007/s11771-015-2490-1
Article

Solution combustion synthesis of Fe-Ni-Y2O3 nanocomposites for magnetic application

Author information +
History +
PDF

Abstract

Fe-Ni-Y2O3 nanocomposites with uniform distribution of fine oxide particles in the gamma FeNi matrix were successfully fabricated via solution combustion followed by hydrogen reduction. The morphological characteristics and phase transformation of the combusted powder and the Fe-Ni-Y2O3 nanocomposites were characterized by XRD, FESEM and TEM. Porous Fe-Ni-Y2O3 nanocomposites with crystallite size below 100 nm were obtained after reduction. The morphology, phases and magnetic property of Fe-Ni-Y2O3 nanocomposites reduced at different temperatures were investigated. The Fe-Ni-Y2O3 nanocomposite reduced at 900 °C has the maximum saturation magnetization and the minimum coercivity values of 167.41 A/(m2·kg) and 3.11 kA/m, respectively.

Keywords

nanocomposite powder / solution combustion synthesis / soft magnetic materials / magnetic properties

Cite this article

Download citation ▾
Ye Liu, Ming-li Qin, Lin Zhang, Bao-rui Jia, Peng-qi Chen, De-zhi Zhang, Xuan-hui Qu. Solution combustion synthesis of Fe-Ni-Y2O3 nanocomposites for magnetic application. Journal of Central South University, 2015, 22(1): 23-29 DOI:10.1007/s11771-015-2490-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BeygiH, ZareM, SajjadiS A. Fabrication of FeNi-Al2O3 nanocomposites and optimization of mechanical properties using Taguchi method [J]. Powder Technology, 2012, 232: 49-57

[2]

QinX Y, CaoR, ZhangJ. Mechanical and magnetic properties of [gamma]-Ni-xFe/Al2O3 composites [J]. Composites Science and Technology, 2007, 67(7/8): 1530-1540

[3]

QinX Y, CaoR, LiH Q. Fabrication and mechanical properties of ultra-fine grained [gamma]-Ni-20Fe/Al2O3 composites [J]. Ceramics International, 2006, 32(5): 575-585

[4]

QinX Y, LeeJ S, KimJ G. Magnetic properties of nanostructured γ-Ni-46Fe alloy synthesized by a mechanochemical process [J]. Journal of Applied Physics, 1999, 86: 2146-2154

[5]

HsiehS H, HorngJ J. Deposition of Fe-Ni nanoparticles on Al2O3 for dechlorination of chloroform and trichloroethylene [J]. Applied Surface Science, 2006, 253(3): 1660-1665

[6]

MousaviT, KarimzadehF, AddasiM H, EnayatiM H. Investigation of Ni nanocrystallization and the effect of Al2O3 addition by high-energy ball milling [J]. Journal of Materials Processing Technology, 2008, 204(1/2/3): 125-129

[7]

ZakeriM, RahimipourM R, SadrnezhadS K. In situ synthesis of FeSi-Al2O3 nanocomposite powder by mechanical alloying [J]. Journal of Alloys and Compounds, 2010, 492(1/2): 226-230

[8]

ParkN R, LeeD M, KoI Y, YoonbJ, ShonI. Rapid consolidation of nanocrystalline Al2O3 reinforced Ni-Fe composite from mechanically alloyed powders by high frequency induction heated sintering [J]. Ceramics International, 2009, 35(8): 3147-3151

[9]

BenjaminJ S. Dispersion strengthened superalloys by mechanical alloying [J]. Metallugical Transactions, 1970, 1: 2943-2951

[10]

BenjaminJ S, VolinT E. The mechanism of mechanical alloying [J]. Metallugical Transactions, 1974, 5: 1929-1934

[11]

ChuA-m, QinM-l, RafiU D, JiaB-r, LuH-f, QuX-hui. Effect of urea on the size and morphology of AlN nanoparticles synthesized from combustion synthesis precursors [J]. Journal of Alloys and Compounds, 2012, 530: 144-161

[12]

ChuA-m, QinM-l, RafiU D, JiaB-r, LuH-f, HeX-b, QuXuanhui. Effect of aluminum source on the synthesis of AlN powders from combustion synthesis precursors [J]. Materials Research Bulletin, 2012, 47: 2475-2479

[13]

ArunaS T, MukasyanA S. Combustion synthesis and nanomaterials [J]. Current Opinion in Solid State and Materials Science, 2008, 12: 44-50

[14]

PatilK C, ArunaS T, MimaniT T. Combustion synthesis: An update [J]. Current Opinion in Solid State and Materials Science, 2002, 6: 507-512

[15]

ErriP, NaderJ, VarmaA. Controlling combustion wave propagation for transition metal/alloy/cermet foam synthesis [J]. Advanced Materials, 2008, 20: 1243-1245

[16]

KumarA, WolfE E, MukasyanA S. Solution combustion synthesis of metal nanopowders: Nickel-reaction pathways [J]. AIChE Journal, 2011, 57: 2207-2214

[17]

ManukyanK V, CrossA, RoslyakovS, RouvimovS, RogachevA S, WolfE E, MukasyanA S. Solution combustion synthesis of nano-crystalline metallic materials: Mechanistic studies [J]. The Journal of Physical Chemistry C, 2013, 117(46): 24417-24427

[18]

ShiK-h, ZhouK-c, ZhangL, LiZ-you. Microstructure characterization of NiFe2O4-NiO solid-solid diffusion couple [J]. Journal of Central South University, 2012, 19: 2411-2415

[19]

DuqueJ G S, SouzaE A, MenesesC T, KubotaL. Magnetic properties of NiFe2O4 nanoparticles produced by a new chemical method [J]. Physica B, 2007, 398: 287-290

[20]

GheisarK, OhJ T, JavadpourS. The effect of heat treatment on the structure and magnetic properties of mechanically alloyed Fe-45%Ni nanostructured powders [J]. Journal of Alloys and Compounds, 2011, 509: 1020-1024

[21]

DeshpandeK, MukasyanA, VarmaA. Direct synthesis of iron oxide nanopowders by the combustion approach: reaction mechanism and properties [J]. Chemistry of Materials, 2004, 16(24): 4896-4904

[22]

FlohrerS, HerzerG. Random and uniform anisotropy in soft magnetic nanocrystalline alloys [J]. Journal of Magnetism and Magnetic Materials, 2010, 322: 1511-1514

[23]

HerzerG. Nanocrystalline soft magnetic materials [J]. Journal of Magnetism and Magnetic Materials, 1992, 112: 258-262

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/