Composition change and capacitance properties of ruthenium oxide thin film

Hong Liu , Wei-ping Gan , Zhong-wu Liu , Feng Zheng

Journal of Central South University ›› 2015, Vol. 22 ›› Issue (1) : 8 -13.

PDF
Journal of Central South University ›› 2015, Vol. 22 ›› Issue (1) : 8 -13. DOI: 10.1007/s11771-015-2488-8
Article

Composition change and capacitance properties of ruthenium oxide thin film

Author information +
History +
PDF

Abstract

RuO2·nH2O film was deposited on tantalum foils by electrodeposition and heat treatment using RuCl3·3H2O as precursor. Surface morphology, composition change and cyclic voltammetry from precursor to amorphous and crystalline RuO2·nH2O films were studied by X-ray diffractometer, Fourier transformation infrared spectrometer, differential thermal analyzer, scanning electron microscope and electrochemical analyzer, respectively. The results show that the precursor was transformed gradually from amorphous to crystalline phase with temperature. When heat treated at 300 °C for 2 h, RuO2·nH2O electrode surface gains mass of 2.5 mg/cm2 with specific capacitance of 782 F/g. Besides, it is found that the specific capacitance of the film decreased by roughly 20% with voltage scan rate increasing from 5 to 250 mV/s.

Keywords

ruthenium oxide / thin film / heat treatment / composition change / electrochemical capacitor

Cite this article

Download citation ▾
Hong Liu, Wei-ping Gan, Zhong-wu Liu, Feng Zheng. Composition change and capacitance properties of ruthenium oxide thin film. Journal of Central South University, 2015, 22(1): 8-13 DOI:10.1007/s11771-015-2488-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hulicova-JurcakovaD, SeredychM, LuG Q, BandoszT J. Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors [J]. Advanced Functional Materials, 2009, 19: 438-447

[2]

HuangJ-s, BobbyG, MeunierS V. Theoretical model for nanoporous carbon supercapacitors [J]. Angewandte Chemie: International Edition, 2008, 47: 520-524

[3]

ChengL, LiH-q, XiaY-yao. A hybrid nonaqueous electrochemical supercapacitor using nano-sized iron oxyhydroxide and activated carbon [J]. Journal of Solid State Electrochemistry, 2006, 10: 405-410

[4]

GujarT P, ShindeV R, LokhandeC D, KimW Y, JuwgK D, JooO S. Spray deposited amorphous RuO2 for an effective use in electrochemical supercapacitor [J]. Electrochemistry Communications, 2007, 9: 504-510

[5]

NaoiK, IshimotoS, OgiharaN, NakagawaY, HattaS. Encapsulation of nanodot ruthenium oxide into KB for electrochemical capacitors [J]. Journal of the Electrochemical Society, 2009, 156(1): A52-A59

[6]

ZhaoY-m, LiuL, XuJ, TangL, YanM-m, JiangZ-yu. High-performance supercapacitors of hydrous ruthenium oxide/mesoporous carbon composites [J]. Journal of Solid State Electrochemistry, 2007, 11: 283-290

[7]

LiJ, ZhitomirskyI. Electrophoretic deposition of manganese oxide nanofibers [J]. Materials Chemistry and Physics, 2008, 112: 525-530

[8]

SharmaR K, RastongiA C, DesuS B. Manganese oxide embedded polypyrrole nanocomposites for electrochemical supercapacitor [J]. Electrochimica Acta, 2008, 53: 7690-7695

[9]

AthouelL, MoserF, DugasR, CrosnierO, LangerD B, BrousseT. Variation of the MnO2 birnessite structure upon charge/discharge in an electrochemical supercapacitor electrode in aqueous Na2SO4 electrolyte [J]. Journal of Physical Chemistry C, 2008, 112: 7270-7277

[10]

XuM-w, ZhaoD-d, BaoS-j, LiH-lin. Mesoporous amorphous MnO2 as electrode material for supercapacitor [J]. Journal of Solid State Electrochemistry, 2007, 11: 1101-1107

[11]

PicoF, IbanezJ, CentenoT A, PecharromanC, RojasR M, AmarillaJ M, RojoJ M. RuOxH2O/NiO composites as electrodes for electrochemical capacitors effect of the RuO2 content and the thermal treatment on the specific capacitance [J]. Electrochimica Acta, 2006, 51: 4693-4700

[12]

LangJ-w, KongL-b, WuW-j, LiuM, LuoY-c, LongKang. A facile approach to the preparation of loose-packed Ni(OH)2 nanoflake materials for electrochemical capacitors [J]. Journal of Solid State Electrochemistry, 2009, 13: 333-340

[13]

XiongS-l, YuanC-z, ZhangX-g, XiB-j, QianY-tai. Controllable synthesis of mesoporous Co3O4 nanostructures with tunable morphology for application in supercapacitors [J]. Chemistry a European journal, 2008, 16: 6314-6326

[14]

JowT R, ZhengJ P. Electrochemical capacitors using hydrous ruthenium oxide and hydrogen inserted ruthenium oxide [J]. Journal of the Electrochemical Society, 1998, 145: 49-52

[15]

LiuX-r, PickupP G. Ru oxide supercapacitors with high loadings and high power and energy densities [J]. Journal of Power Sources, 2008, 176: 410-416

[16]

HuC-c, ChangK-huei. Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical supercapacitors: Effects of the chloride precursor transformation [J]. Journal of Power Sources, 2002, 112: 401-409

[17]

HuC-h, LiuM-j, ChangK-hsin. Anodic deposition of hydrous ruthenium oxide for supercapacitors [J]. Journal of Power Sources, 2007, 163: 1126-1131

[18]

KimI H, KimK B. Ruthenium oxide thin film electrodes for supercapacitors [J]. Electrochemical and Solid-State Letters, 2001, 4(5): A62-A64

[19]

ParkB O, LokhandeC D, ParkH S, JungK D, JooO S. Cathodic electrodeposition of RuO2 thin films from Ru(III)Cl3 solution [J]. Materials Chemistry and Physics, 2004, 87: 59-66

[20]

MontillaF, CotareloM A, MorallonE. Hybrid sol-gel-conducting polymer synthesised by electrochemical insertion: Tailoring the capacitance of polyaniline [J]. Journal of Materials Chemistry, 2009, 19: 305-310

[21]

SugimotoW, IwataH, YasunagaY, MurakamiY, TakasuY. Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage [J]. Angewandte Chemie: International Edition, 2003, 42: 4092-4096

[22]

TiC C, KumarS A, ChenS M. Electrochemical preparation, characterization, and electrocatalytic studies of nafion-ruthenium oxide modified glassy carbon electrode [J]. Journal of Solid State Electrochemistry, 2009, 13: 397-406

[23]

ChangK-h, HuC-chang. Oxidative synthesis of RuOx·nH2O with ideal capacitive characteristics for supercapacitors [J]. Journal of the Electrochemical Society, 2004, 151(7): A958-A964

[24]

MinM, MachidaK, JangJ H, NaoiK. Hydrous RuO2/carbon black nanocomposites with 3D porous structure by novel incipient wetness method for supercapacitors [J]. Journal of the Electrochemical Society, 2006, 153(2): A334-A338

[25]

PauporteT, GouxA, Kahn-HarariA, TacconiN D, ChenthamarakshanC R. Cathodic electrodeposition of mixed oxide thin films [J]. Journal of Physics and Chemistry of Solids, 2003, 64: 1737-1742

[26]

PengX-y, LiuX-x, HuaP-j, DermotD, Kzng-TingL. Electrochemical codeposition of nickel oxide and polyaniline [J]. Journal of Solid State Electrochemistry, 2010, 14: 1-7

[27]

LiuH, GanW-p, HuangB, ShiX, LiuJ-y, ZhengFeng. Heat treatment process of RuO2·nH2O electrode material for supercapacitor [J]. Journal of Central South University: Science and Technology, 2009, 40(6): 1546-1551

[28]

ZhengJ P, XinY. Characterization of RuO2·xH2O with various water contents [J]. Journal of Power Sources, 2002, 110: 86-90

[29]

LongJ W, SwideK E, MerzbacherC I, RolisonD R. Voltammetric characterization of ruthenium oxide-based aerogels and other RuO2 solids: The nature of capacitance in nanostructured materials [J]. Langmuir, 1999, 15: 780-785

[30]

SugimotoW, YokoshimaK, MurakamiY, TakasuY. Charge storage mechanism of nanostructured anhydrous and hydrous ruthenium-based oxides [J]. Electrochimica Acta, 2006, 52: 1742-1748

[31]

GaneshV, LakshminarayananV. Preparation of high surface area nickel electrodeposit using a liquid crystal template technique [J]. Electrochimica Acta, 2004, 49: 3561-3572

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/