Effect of catalyst on formation of poly(methyl methacrylate) brushes by surface initiated atom transfer radical polymerization

Hui Liu , Wan-zhu Zhou , Hong-qi Ye , Kai Han , Shi-chuan Hou , Xin-yue Zhang

Journal of Central South University ›› 2014, Vol. 21 ›› Issue (8) : 3049 -3056.

PDF
Journal of Central South University ›› 2014, Vol. 21 ›› Issue (8) : 3049 -3056. DOI: 10.1007/s11771-014-2275-y
Article

Effect of catalyst on formation of poly(methyl methacrylate) brushes by surface initiated atom transfer radical polymerization

Author information +
History +
PDF

Abstract

Poly (methyl methacrylate) (PMMA) brushes were synthesized from silicon wafers via surface initiated atom transfer radical polymerization (SI-ATRP). Energy disperse spectroscopy (EDS) and atomic force microscopy (AFM) confirmed that PMMA brushes were successfully prepared on the silicon wafers, and the surface became more hydrophobic according to the contact angle of 69°. It is found that CuCl/1, 1, 4, 7, 10, 10-hexamethyl triethylenetetramine (HMTETA) system is more suitable than CuBr/N, N, N′, N″, N″-pentamethyl diethylenetriamine (PMDETA) system to control the free radical polymerization of MMA in solution. Nevertheless, better control on the thickness of PMMA brushes was achieved in CuBr/PMDETA than in CuCl/HMTETA due to higher activity and better reversibility of the former system.

Keywords

poly (methyl methacrylate) / atom transfer radical polymerization / silicon wafer / catalyst

Cite this article

Download citation ▾
Hui Liu, Wan-zhu Zhou, Hong-qi Ye, Kai Han, Shi-chuan Hou, Xin-yue Zhang. Effect of catalyst on formation of poly(methyl methacrylate) brushes by surface initiated atom transfer radical polymerization. Journal of Central South University, 2014, 21(8): 3049-3056 DOI:10.1007/s11771-014-2275-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

YavuzE, BayramoğluG, ŞenkalB F, AricaM Y. Poly (vinylbenzylchloride) beads grafted with polymer brushes carrying hydrazine ligand for reversible enzyme immobilization [J]. Journal of Applied Polymer Science, 2009, 113(4): 2661-2669

[2]

SenaratneW, AndruzziL, OberC K. Self-assembled monolayers and polymer brushes in biotechnology: Current applications and future perspectives [J]. Biomacromolecules, 2005, 6(5): 2427-2448

[3]

LipowskyR, LenzP, SwainP S. Wetting and dewetting of structured and imprinted surfaces [J]. Colloids and Surfaces A, 2000, 161(1): 3-22

[4]

BaiP, SuF-b, WuP-p, WangL-k, LeeF-Y, LvL, YanZ-f, ZhaoX S. Copolymer-controlled homogeneous precipitation for the synthesis of porous microfibers of alumina [J]. Langmuir, 2007, 23(8): 4599-4605

[5]

TakagiK, SaikiK, HayashiH, OhsawaH, MatsuokaS, SuzukiM. Tropolone-terminated oligomeric fluorophores with responsive properties to external environment [J]. Bulletin of the Chemical Society of Japan, 2009, 82(2): 236-241

[6]

LiuC-b, WangX-j, LiuR-h, WuY-l, LuoS-lian. A new multifunctional polymer: Synthesis and characterization of mPEG-b-PAA-grafted chitosan copolymer [J]. Journal of Central South University, 2010, 17(5): 936-942

[7]

RaduA, ByrneR, AlhashimyN, FusaroM, ScarmagnaniS, DiamondD. Spiropyran-based reversible, light-modulated sensing with reduced photofatigue [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 206(2/3): 109-115

[8]

HussemanM, MalmströmE E, McnamaraM, MateM, MecerreyesD, BenoitD G, HedrickJ L, ManskyP, HuangE, RussellT P, HawkerC J. Controlled synthesis of polymer brushes by “living” free radical polymerization techniques [J]. Macromolecules, 1999, 32(5): 1424-1431

[9]

ZhaoBin. Synthesis of binary mixed homopolymer brushes by combining atom transfer radical polymerization and nitroxide-mediated radical polymerization [J]. Polymer, 2003, 44(15): 4079-4083

[10]

HawkerC J, BosmanA W, HarthE. New polymer synthesis by nitroxide mediated living radical polymerizations [J]. Chemical Review, 2001, 101(12): 3661-3668

[11]

ChongY K, KrstinaJ, LeT P T, MoadG, PostmaA, RizzardoE, ThangS H. Thiocarbonylthio compounds [s=c(ph)s-r] in free radical polymerization with reversible addition-fragmentation chain transfer (graft polymerization). Role of the free-radical leaving group (R) [J]. Macromolecules, 2003, 36(7): 2256-2272

[12]

LiH-f, HaoZ-m, TanK-y, QinM-lan. Synthesis and characterization of a novel graft copolymer poly (vinylidene fluoride-co-chlorotrifluoroethylene)-g-poly (6-((4-cyano-4-biphenyl)oxy)hexyl methacrylate) [J]. Journal of Central South University (Science and Technology), 2010, 41(5): 1724-1729

[13]

ChenX-y, RandallD P, PerruchotC, WattsJ F, PattenT E, WerneT, ArmesS P. Synthesis and aqueous solution properties of polyelectrolyte-grafted silica particles prepared by surface-initiated atom transfer radical polymerization [J]. Journal of Colloid and Interface Science, 2003, 257(1): 56-64

[14]

WangM, PramodaK P, GohS H. Enhancement of the mechanical properties of poly (styrene-co-acrylonitrile) with poly (methyl methacrylate)-grafted multiwalled carbon nanotubes [J]. Polymer, 2005, 46(25): 11510-11516

[15]

ChenR-x, ZhuS-p, MaclaughlinS. Grafting acrylic polymers from flat nickel and copper surfaces by surface-initiated atom transfer radical polymerization [J]. Langmuir, 2008, 24(13): 6889-6896

[16]

BarthélémyB, DevillersS, MinetI, DelhalleJ, MekhalifZ. Induction heating for surface triggering styrene polymerization on titanium modified with ATRP initiator [J]. Journal of Colloid and Interface Science, 2011, 354(2): 873-879

[17]

LindqvistJ, NyströmD, ÖstmarkE, AntoniP, CarlmarkA, JohanssonM, HultA, MalmströmE. Intelligent dual-responsive cellulose surfaces via surface-initiated ATRP [J]. Biomacromolecules, 2008, 9(8): 2139-2145

[18]

ÖztürkE, TuranE, CaykaraT. Fabrication of ultrahydrophobic poly (lauryl acrylate) brushes on silicon wafer via surface-initiated atom transfer radical polymerization [J]. Applied Surface Science, 2010, 257(3): 1015-1020

[19]

SuiX-f, ZapotocznyS, BenettiE M, MemesaM, HempeniusM A, VancsoG J. Grafting mixed responsive brushes of poly (N-isopropylacrylamide) and poly (methacrylic acid) from gold by selective initiation [J]. Polymer Chemistry, 2011, 2(4): 879-884

[20]

YeP-l, DongH-c, ZhongM-j, MatyjaszewskiK. Synthesis of binary polymer brushes via two-step reverse atom transfer radical polymerization [J]. Macromolecules, 2011, 44(7): 2253-2260

[21]

PasettoP, BlasH, AudouinF, BoissiěreC, SanchezC, SaveM, CharleuxB. Mechanistic insight into surface-initiated polymerization of methyl methacrylate and styrene via ATRP from ordered mesoporous silica particles [J]. Macromolecules, 2009, 42(16): 5983-5995

[22]

XiaJ-h, ZhangX, MatyjaszewskiK. The effect of ligands on copper-mediated atom transfer radical polymerization [J]. ACS Symposium Series, 2000, 760: 207-223

[23]

TangW, MatyjaszewskiK. Effect of ligand structure on activation rate constants in ATRP [J]. Macromolecules, 2006, 39(15): 4953-4959

[24]

MatyjaszewskiK, WangJ L, GrimaudT, ShippD A. Controlled/“living” atom transfer radical polymerization of methyl methacrylate using various initiation systems [J]. Macromolecules, 1998, 31(5): 1527-1534

[25]

WangJ L, GrimaudT, MatyjaszewskiK. Kinetic study of the homogeneous atom transfer radical polymerization of methyl methacrylate [J]. Macromolecules, 1997, 30(21): 6507-6512

[26]

TangW, KwakY, BrauneckerW, TsarevskyN V, CooteM L, MatyjaszewskiK. Understanding atom transfer radical polymerization: Effect of ligand and initiator structures on the equilibrium constants [J]. Journal of the American Chemical Society, 2008, 130(32): 10702-10713

AI Summary AI Mindmap
PDF

80

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/