Numerical analysis of interaction between solute atom and extended dislocation using force multipoles

Hiroaki Morita , Akiyuki Takahashi

Journal of Central South University ›› 2014, Vol. 21 ›› Issue (8) : 3000 -3006.

PDF
Journal of Central South University ›› 2014, Vol. 21 ›› Issue (8) : 3000 -3006. DOI: 10.1007/s11771-014-2268-x
Article

Numerical analysis of interaction between solute atom and extended dislocation using force multipoles

Author information +
History +
PDF

Abstract

The interaction between a solute atom and an extended dislocation was investigated using a continuum approximation method with force multipoles. The dislocation core structure of extended dislocation was modeled with the Peierls-Nabarro model discretized with a number of infinitesimal Volterra dislocations. The interaction energy and force between a nickel solute atom and perfect and extended dislocation in copper were successfully calculated using the force multipoles. The results clearly show that the core structure of extended dislocation weakens the interaction with solute atoms. The interaction energy and force for extended dislocations are almost the half of those for perfect dislocations.

Keywords

solution hardening / force multipole / solute atom / extended dislocation / Peierls-Nabarro model

Cite this article

Download citation ▾
Hiroaki Morita, Akiyuki Takahashi. Numerical analysis of interaction between solute atom and extended dislocation using force multipoles. Journal of Central South University, 2014, 21(8): 3000-3006 DOI:10.1007/s11771-014-2268-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

KamadaK, YoshizawaI. The anomalies in temperature dependence of the yield stress of Cu base solid solution [J]. Journal of the Physical Society of Japan, 1971, 31(4): 1056-1068

[2]

FleischerR I. Solution hardening [J]. Acta Metallurgica, 1961, 9(11): 996-1000

[3]

FleischerR I. Substitutional solution hardening [J]. Acta Metallurgica, 1963, 11(3): 203-209

[4]

SimarA, VoigtH J L, WirthB D. Molecular dynamics simulations of dislocation interaction with voids in nickel [J]. Computational Materials Science, 2011, 50(5): 1811-1817

[5]

DuttaA, BhattacharyaM, GayathriN, DasG C, BaratP. The mechanism of climb in dislocation-nanovoid interaction [J]. Acta Materialia, 2012, 60(9): 3789-3798

[6]

TerentyevM, BakaevA. Interaction of a screw dislocation with Frank loops in Fe-10Ni-20Cr alloy [J]. Journal of Nuclear Materials, 2013, 442: 208-217

[7]

OsetskyY N, BaconD J. Atomic-level dislocation dynamics in irradiated metals [J]. Comprehensive Nuclear Materials, 2012, 1: 333-356

[8]

TeodosiuCElastic models of crystal defect [M], 1982, Springer Berlin, Heidelberg: 287-316

[9]

ChenZ, KioussisN, GhoniemN, SeifD. Strain-field effects on the formation and migration energies of self interstitials in alpha-Fe from first principle [J]. Phys Rev B, 2010, 81(9): 094102

[10]

NabarroF R N. Dislocations in a simple cubic lattice [J]. Proceedings of Physical Society, 1947, 59: 256-272

[11]

BanerjeeS, GhoniemN, LuG, KioussisN. Non-singular descriptions of dislocation cores: A hybrid ab-initio continuum approach [J]. Philosophical Magazine, 2008, 87(27): 4131-4150

[12]

TakahashiA, GhoniemN M. Structure of self-interstitial atom clusters in iron and copper [J]. Physical Review B, 2009, 80(17): 174104

[13]

RamirezB, GhoniemN, PoG. Ab initio continuum model for the influence of local stress on cross slip of screw dislocations in fcc metals [J]. Rhysical Review B, 2012, 86(9): 094115

[14]

MuraT. Micromechanics of defects in solids [M]. Martinus Nijhoff, Dordrecht, 198263-109

[15]

IshiguroT, MatsuokaT, TakahashiA. Continuum modeling of displacement field around lattice defects [C]. Proceedings of JSCES Conference. Tokyo, 201116

[16]

AmodeoR J, GhoniemN M. Dislocation dynamics. I. A proposed methodology for deformation micromechanics [J]. Physical Review B, 1990, 41(10): 6958-6967

[17]

BonneyG, PasianotR C, CastinK, MalerbaL. Ternary Fe-Cu-Ni many-body potential to model reactor pressure vessel steels: First validation by simulated thermal annealing [J]. Philosophical Magazine, 2009, 89(25): 3531-3546

[18]

MishinY, MehlM J, PapaconstantopoulosD A, VoterA F, KressJ D. Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations [J]. Physical Review B, 2001, 63: 224106

[19]

StukowskiA. Structure identification methods for atomistic simulations of crystalline materials [J]. Modelling and Simulation in Materials Science and Engineering, 2012, 20: 045021

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/