Removal of cadmium from aqueous solution by immobilized Microcystis aeruginosa: Isotherms, kinetics and thermodynamics

Hui Wang , Yun-guo Liu , Xin-jiang Hu , Ting-ting Li , Ting Liao , Ming Lu

Journal of Central South University ›› 2014, Vol. 21 ›› Issue (7) : 2810 -2818.

PDF
Journal of Central South University ›› 2014, Vol. 21 ›› Issue (7) : 2810 -2818. DOI: 10.1007/s11771-014-2244-5
Article

Removal of cadmium from aqueous solution by immobilized Microcystis aeruginosa: Isotherms, kinetics and thermodynamics

Author information +
History +
PDF

Abstract

The Microcystis aeruginosa (MA) was immobilized on sodium alginate and used as biosorbent for removal of Cd(II) ions from aqueous solution. The biosorption process is pH dependent, and the optimum biosorption was observed at pH 6.0 with the biosorption capacity of 98.38 mg/g. Among Langmuir, Freundlich and Temkin isotherm models, the Freundlich and the Temkin isotherm fit well with the experimental data. Cd(II) ions biosorption follows the pseudo-second-order kinetic model. The rate controlling mechanism study reveals that film diffusion is the rate-limiting step and intraparticle diffusion is also involved in biosorption. Thermodynamic parameters, such as Gibbs free energy (ΔGo), the enthalpy (ΔHpo) and entropy (ΔSo) were calculated, and revealed that the biosorption process is spontaneous, exothermic and random. Furthermore, the immobilized MA can be regenerated using 0.1 mol/L HCl solutions.

Keywords

cadmium / immobilized Microcystis aeruginosa / biosorption / isotherms / kinetics / thermodynamics

Cite this article

Download citation ▾
Hui Wang, Yun-guo Liu, Xin-jiang Hu, Ting-ting Li, Ting Liao, Ming Lu. Removal of cadmium from aqueous solution by immobilized Microcystis aeruginosa: Isotherms, kinetics and thermodynamics. Journal of Central South University, 2014, 21(7): 2810-2818 DOI:10.1007/s11771-014-2244-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pérez-MarínA B, ZapataV M, OrtuñoJ F, AguilarM, SáezJ, LlorénsM. Removal of cadmium from aqueous solutions by adsorption onto orange waste [J]. Journal of Hazardous Materials, 2007, 139(1): 122-131

[2]

LuoJ-m, XiaoX, LuoS-lian. Biosorption of cadmium(II) from aqueous solutions by industrial fungus rhizopus cohnii [J]. Transactions of Nonferrous Metals Society of China, 2010, 20(6): 1104-1111

[3]

WaalkesM P. Review cadmium carcinogenesis [J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2003, 533(1): 107-120

[4]

ChenG-q, ZengG-m, TangL, DuC-y, JiangX-y, HuangG-h, LiuH-l, ShenG-li. Cadmium removal from aqueous solution to biomass byproduct of Lentinusedodes [J]. Bioresource Technology, 2008, 99(15): 7034-7040

[5]

WangJ-s, HuX-j, LiuY-g, XieS-b, BaoZ-lei. Biosorption of uranium (VI) by immobilized Aspergillusfumigatus beads [J]. Journal of Environmental Radioactivity, 2010, 101(6): 504-508

[6]

PandaM, BhowalA, DattaS. Removal of hexavalent chromium by biosorption process in rotating packed bed [J]. Enviroment Science & Technology, 2011, 45(19): 8460-8466

[7]

FengN-c, GuoX-y, LiangSha. Kinetic and thermodynamic studies on biosorption of Cu(II) by chemically modified orange peel [J]. Transactions of Nonferrous Metals Society of China, 2009, 19: 1365-1370

[8]

YanR, YangF, WuY-h, HuZ-y, NathB, YangL Z, FangY-ming. Cadmium and mercury removal from non-point source wastewater by a hybrid bioreactor [J]. Bioresource Technology, 2011, 102(21): 9927-9932

[9]

KatircioğluH, AslimB, TürkerA R, AticiT, BeyatliY. Removal of cadmium(II) ion from aqueous system by dry biomass, immobilized live and heat-inactivated Oscillatoria sp. H1 isolated from freshwater (Mogan Lake) [J]. Bioresource Technology, 2008, 99(10): 4185-4191

[10]

PavasantP, ApiratikulR, SungkhumV, SurhiparinyanontP, WattanachiraS, MarhabaT F. Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using dried marine grenmacroalga Capulerpalentillifera [J]. Bioresource Technology, 2006, 97(18): 2321-2329

[11]

HusseinH, İbrahimS F, KandeelK, MoawadH. Biosorption of heavy metals from waste water using Pseudomonas sp H1 [J]. Electronic Journal of Biotechnology, 2004, 7(1): 38-46

[12]

AricaM Y, BayramoğluG, YilmazM, BektaşS, GençÖ. Biosorption of Hg2+,Cd2+, and Zn2+ by Ca-alginate and immobilized wood-rotting fungus Funaliatrogii [J]. Journal of Hazardous Materials, 2004, 109(1): 191-199

[13]

ZhangY-s, LiuW-g, XuM, ZhengF, ZhaoM-jun. Study of the mechanisms of Cu2+ biosorption by ethanol/caustic-pretreated baker’s yeast biomass [J]. Journal of Hazardous Materials, 2010, 178(1): 1085-1093

[14]

SchiewerS, VoleskyBBiosorption processes for heavy metal removal [M], 2000, Washington, DC, ASM Press: 24-26

[15]

BajpaiJ, ShrivastavaR, BajpaiA K. Dynamic and equilibrium studies on adsorption of Cr(VI) ions onto binary biopolymeric beads of cross-linked alginate and gelatin [J]. Colloids Surf A: Physicochem Eng Aspects, 2004, 236(1): 81-90

[16]

BaiR S, AbrahamT E. Studies on Cr(VI) adsorption-desorption using immobilized fungal biomass [J]. Bioresource Technology, 2003, 87(1): 17-26

[17]

ChenJ H, LiuQ L, HuS R, NiJ C, HeY S. Adsorption mechanism of Cu(II) ions from aqueous solution by glutaraldehyde crosslinked humic acid-immobilized sodium alginate porous membrane adsorbent [J]. Chemical Engineering Journal, 2011, 173(2): 511-519

[18]

BriganteM, ZaniniG, AvenaM. Effect of humic acids on the adsorption of paraquat by goethite [J]. Journal of Hazardous Materials, 2010, 184(1): 241-247

[19]

KapoorA, ViraraghavanT, CullimoreD R. Removal of heavy metals using the fungus Aspergillus niger [J]. Bioresource Technology, 1999, 70(1): 95-104

[20]

XiaoX, LuoS-l, ZengG-m, WeiW-z, WanY, ChenL, GuoH-j, CaoZ, YangL-x, ChenJ-l, XiQiang. Biosorption of cadmium by endophytic fungus(EF) Microsphaeropsis sp LSE10 isolated from cadmium hyperaccumulator solanum nigrum L [J]. Bioresource Technology, 2010, 101(6): 1668-1674

[21]

RangsayatornN, PokethitiyookP, UpathamE S, LanzaG R. Cadmium biosorption by cells of Spirulina platensis TISTR 8217 immobilized in alginate and silica gel [J]. Environment International, 2004, 30(1): 57-63

[22]

Godlewska-ŻyłkiewichzB. Biosorption of platinum and palladium for their separation/preconcentration prior to graphite furnace atomic absorption spectrometric determination [J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2003, 58(8): 1531-1540

[23]

HuX-j, WangJ-s, LiuY-g, LiX, ZengG-m, BaoZ-l, ZengX-x, ChenA-w, LongFei. Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics [J]. Journal of Hazardous Materials, 2011, 185(1): 306-314

[24]

YuanX-z, JiangL-l, ZengG-m, LiuZ-f, ZhongH, HuangH-j, ZhouM-f, CuiK-long. Effect of rhamnolipids on cadmium adsorption by Penicillium simplicissimum [J]. Journal of Central South University, 2012, 19(4): 1073-1080

[25]

HamdaouiO, NaffrechouxE. Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon Part I. Two-parameter models and equations allowing determination of thermodynamic parameters [J]. Journal of Hazardous Materials, 2007, 147(1): 381-394

[26]

AkarT, TunaliS. Biosorption characteristics of Aspergillusflavus biomass for removal of Pb(II) and Cu(II) ions from an aqueous solution [J]. Bioresource Technology, 2006, 97(15): 1780-1787

[27]

KiranB, KaushikA. Chromium binding capacity of Lyngbya putealis exopolysaccharides [J]. Biochemical Engineering Journal, 2008, 38(1): 47-54

[28]

MataY N, BlázquezM L, BallesterA, GonzálezF, MuñozJ A. Biosorption of cadmium, lead and copper with calcium alginate xerogels and immobilized Fucusvesiculosus [J]. Journal of Hazardous Materials, 2009, 163(2): 555-562

[29]

HoY S, MckayG. Kinetic models for the sorption of dye from aqueous solution by wood [J]. Process Safety and Environmental Protection, 1998, 76(2): 183-191

[30]

BlanchardG, MaunayeM, MartinG. Removal of heavy metals from waters by means of natural zeolites [J]. Water Research, 1984, 18(12): 1501-1507

[31]

Wan NgahW S, Ab GhaniS, KamariA. Adsorption behaviour of Fe(II) and Fe(III) ions in aqueous solution on chitosan and cross-linked chitosan beads [J]. Bioresource Technology, 2005, 96(4): 443-450

[32]

DingY, JingD-b, GongH-l, ZhouL-b, YangX-song. Biosorption of aquatic cadmium(II) by unmodified rice straw [J]. Bioresource Technology, 2012, 114: 20-25

[33]

DottoG L, VieiraM L G, PintoL A A. Kinetics and mechanism of tartrazine adsorption onto chitin and chitosan [J]. Industrial & Engineering Chemistry Research, 2012, 51(19): 6862-6868

[34]

BoydG E, AdamsonA W, MyersL S. The exchange adsorption of ions from aqueous solutions by organic zeolites [J]. Journal of the American Chemical Society, 1947, 69(11): 2836-2848

[35]

MohanD, SinghK P. Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse-an agricultural waste [J]. Water Research, 2002, 36(9): 2304-2318

[36]

SundaramaC S, ViswanathanN, MeenakshiS. Defluoridation chemistry of synthetic hydroxyapatite at nano scale: Equilibrium and kinetic studies [J]. Journal of Hazardous Materials, 2008, 155(1): 206-215

[37]

Wan NgahW S, FatinathanS. Adsorption of Cu(II) ions in aqueous solution using chitosan beads, chitosan-GLA beads and chitosan-alginate beads [J]. Chemical Engineering Journal, 2008, 143(1): 62-72

AI Summary AI Mindmap
PDF

84

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/