Bioleaching of complex polymetallic sulfide ores by mixed culture

Jun Wang , Hong-bo Zhao , Wen-qing Qin , Guan-zhou Qiu

Journal of Central South University ›› 2014, Vol. 21 ›› Issue (7) : 2633 -2637.

PDF
Journal of Central South University ›› 2014, Vol. 21 ›› Issue (7) : 2633 -2637. DOI: 10.1007/s11771-014-2223-x
Article

Bioleaching of complex polymetallic sulfide ores by mixed culture

Author information +
History +
PDF

Abstract

Bacterial leaching of single sulfide minerals and polymetallic sulfide ores was operated in shake flasks and small-scaled columns. The results show that bioleaching of jamesonite is not accessible, the iron extraction rate of pyrrhotite bioleaching reaches 98.2% after 26 d, and the zinc extraction rate of marmatite bioleaching reaches 92.3%, while the corresponding iron extraction reaches only 13.6% after 29 d. Pulp density has a significant effect on metal extraction of pyrrhotite and marmatite bioleaching. The corresponding metal extraction rate decreases with the increase of pulp density. For the polymetallic sulfide ores, zinc extraction of 97.1% is achieved after bioleaching in shake flasks for 10 d, while only 7.8% is obtained after bioleaching in small-scaled column. Analytical results of scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) reveal that large amount of calcium sulfate is formed on the mineral surface.

Keywords

polymetallic sulfide ores / jamesonite / marmatite / pyrrhotite / bioleaching

Cite this article

Download citation ▾
Jun Wang, Hong-bo Zhao, Wen-qing Qin, Guan-zhou Qiu. Bioleaching of complex polymetallic sulfide ores by mixed culture. Journal of Central South University, 2014, 21(7): 2633-2637 DOI:10.1007/s11771-014-2223-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LiC-x, WenS-m, ZhangJ-h, WangC-l, LiuJ, ShenH-ying. Comprehensive recovery of valuable metals from copper polymetallic sulphide ore [J]. Advanced Materials Research, 2012, 524/525/526/527: 957-964

[2]

XuL-g, BerndL, MaoJ-w, QuW-j, DuA-dao. Re-Os age of polymetallic Ni-Mo-PGE-Au mineralization in early Cambrian black shales of South China-A reassessment [J]. Economic Geology, 2011, 106(3): 511-522

[3]

RohwerderT, GehrkeT, KinzlerK, SandW. Bioleaching review-Part A [J]. Applied Microbiology and Biotechnology, 2003, 63(3): 239-248

[4]

WatlingH R. The bioleaching of sulphide minerals with emphasis on copper sulphides-A review [J]. Hydrometallurgy, 2006, 84(1): 81-108

[5]

VeraM, SchippersA, SandW. Progress in bioleaching: Fundamentals and mechanisms of bacterial metal sulfide oxidation-Part A [J]. Applied Microbiology and Biotechnology, 20131-13

[6]

DelvastoP, ValverdeA, BallesterA, MunozJ A, GonzalezF, BlazquezM L, IgualJ M, Garcia-balboaC. Diversity and activity of phosphate bioleaching bacteria from a high-phosphorus iron ore [J]. Hydrometallurgy, 2008, 92(3): 124-129

[7]

ChenP, YanL, LengF-f, NanW-b, YueX-x, ZhengY-n, FengN, LiH-yu. Bioleaching of realgar by Acidithiobacillus ferrooxidans using ferrous iron and elemental sulfur as the sole and mixed energy sources [J]. Bioresource Technology, 2011, 102(3): 3260-3267

[8]

XiaL-x, YinC, DaiS-l, QiuG-z, ChenX-h, LiuJ-she. Bioleaching of chalcopyrite concentrate using Leptospirillum ferriphilum, Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in a continuous bubble column reactor [J]. Journal of Industrial Microbiology & Biotechnology, 2010, 37(3): 289-295

[9]

BanJ-r, GuG-h, HuK-ting. Bioleaching and electrochemical property of marmatite by Leptospirillum ferrooxidans [J]. Transactions of Nonferrous Metals Society of China, 2013, 23(2): 494-500

[10]

ZhaoH-b, WangJ, HuM-h, QinW-q, ZhuS, ZhangY-s, QiuG-zhou. Synergistic bioleaching of chalcopyrite and bornite in the presence of Acidithiobacillus ferrooxidans [J]. Bioresource Technology, 2013, 149: 71-76

[11]

WangJ, ZhaoH-b, QinW-q, ZhangY-s, YangC-r, QiuG-zhou. Investigation of interface and electrochemical behaviors of chalcopyrite dissolution in different leaching mediums [J]. Int J Electrochem Sci, 2013, 8: 12590-12599

[12]

DeveciH, AkcilA, AlpI. Bioleaching of complex zinc sulphides using mesophilic and thermophilic bacteria: Comparative importance of pH and iron [J]. Hydrometallurgy, 2004, 73(3): 293-303

[13]

OlsonG J, BrierleyJ A, BrierleyC L. Bioleaching review—Part B [J]. Applied Microbiology and Biotechnology, 2003, 63(3): 249-257

[14]

RomanoP, BlazquezM L, AlguacilF J, MunozJ A, BallesterA, GonzalezF. Comparative study on the selective chalcopyrite bioleaching of a molybdenite concentrate with mesophilic and thermophilic bacteria [J]. FEMS Microbiology Letters, 2001, 196(1): 71-75

[15]

BrierleyJ A, BrierleyC L. Present and future commercial applications of biohydrometallurgy [J]. Hydrometallurgy, 2001, 59(2): 233-239

[16]

XinB-p, ZhangD, ZhangX, XiaY-t, WuF, ChenS, LiLi. Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria [J]. Bioresource Technology, 2009, 100(24): 6163-6169

[17]

ZhuN-w, XiangY, ZhangT, WuP-x, DangZ, LiP, WuJ-hua. Bioleaching of metal concentrates of waste printed circuit boards by mixed culture of acidophilic bacteria [J]. Journal of Hazardous Materials, 2011, 192(2): 614-619

[18]

DuanN, ZhouC-b, ChenB, JiangW-f, XinB-ping. Bioleaching of Mn from manganese residues by the mixed culture of Acidithiobacillus and mechanism [J]. Journal of Chemical Technology and Biotechnology, 2011, 86(6): 832-837

[19]

BalazP, AchimovicovM. Mechano-chemical leaching in hydrometallurgy of complex sulphides [J]. Hydrometallurgy, 2006, 84(1): 60-68

[20]

YangT-z, JiangM-x, LaiQ-l, ChenJ-zhong. Sodium sulfide leaching of low-grade jamesonite concentrate in production of sodium pyroantimoniate [J]. Journal of Central South University of Technology, 2005, 12(3): 290-294

[21]

LanZ-y, HuY-h, QinW-qing. Effect of surfactant OPD on the bioleaching of marmatite [J]. Minerals Engineering, 2009, 22(1): 10-13

[22]

FengL, ShenQ, YangX, JinB. Thermodynamic of acid leaching of marmatite under oxygen pressure [C]. GMSARN International Conference on Sustainable Development: Challenges and Opportunities, 200912-14

[23]

WangS-t, ZhangG-j, YuanQ-h, FangZ-h, YangChao. Comparative study of external addition of Fe2+ and inoculum on bioleaching of marmatite flotation concentrate using mesophilic and moderate thermophilic bacteria [J]. Hydrometallurgy, 2008, 93(1): 51-56

[24]

ShiS-y, FangZ-h, NiJ-ren. Electrochemistry of marmatite-carbon paste electrode in the presence of bacterial strains [J]. Bioelectrochemistry, 2006, 68(1): 113-118

[25]

ShiS-y, FangZ-h, NiJ-ren. Comparative study on the bioleaching of zinc sulphides [J]. Process Biochemistry, 2006, 41(2): 438-446

[26]

BelzileN, ChenY-w, CaiM-f, LiY-rong. A review on pyrrhotite oxidation [J]. Journal of Geochemical Exploration, 2004, 84(2): 65-76

[27]

VeglioF, BeolchiniF, NardiniA, ToroL. Bioleaching of a pyrrhotite ore by a sulfooxidans strain: Kinetic analysis [J]. Chemical Engineering Science, 2000, 55(4): 783-795

[28]

AhmadiA, SchaffieM, PetersenJ, SchippersA, RanjbarM. Conventional and electrochemical bioleaching of chalcopyrite concentrates by moderately thermophilic bacteria at high pulp density [J]. Hydrometallurgy, 2011, 106(1): 84-92

[29]

MousaviS M, YaghmaeiS, VossoughiM, JafariA, HoseiniS A. Comparison of bioleaching ability of two native mesophilic and thermophilic bacteria on copper recovery from chalcopyrite concentrate in an airlift bioreactor [J]. Hydrometallurgy, 2005, 80(1): 139-144

[30]

WangJ, QiuG-z, QinW-q, ZhangY-sheng. Miaobial leaching of marmatite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans [J]. Transactions of Nonferrous Metals Society of China, 2006, 16(4): 937-942

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/