Electronic and optical properties of anion-doped c-ZrO2 from first-principles calculations

Jia-feng Ding , Xin-mei Li , Li-ling Cui , Can Cao , Hui-hai Wang , Jian Cao

Journal of Central South University ›› 2014, Vol. 21 ›› Issue (7) : 2584 -2589.

PDF
Journal of Central South University ›› 2014, Vol. 21 ›› Issue (7) : 2584 -2589. DOI: 10.1007/s11771-014-2216-9
Article

Electronic and optical properties of anion-doped c-ZrO2 from first-principles calculations

Author information +
History +
PDF

Abstract

Using the first-principles calculations based on density functional theory (DFT), the structure stability, electronic and some optical properties of C and N doped cubic ZrO2 (c-ZrO2) in 24-atom systems were investigated. It is found from the formation energies calculations that N ions are easier to be doped into c-ZrO2 than C ions. The electronic structure results show that Zr8O15C and Zr8O15N systems are semiconductors with the band gap of 2.3 eV and 2.8 eV, respectively, which are lower than that of the pure ZrO2 (3.349 eV). And optical properties results depict that anion doping, especially C adding, can enhance the static dielectric function, visible and ultraviolet light absorption and reflecting ability of c-ZrO2 crystal.

Keywords

anion-doping / first-principles calculations / electronic properties / optical properties

Cite this article

Download citation ▾
Jia-feng Ding, Xin-mei Li, Li-ling Cui, Can Cao, Hui-hai Wang, Jian Cao. Electronic and optical properties of anion-doped c-ZrO2 from first-principles calculations. Journal of Central South University, 2014, 21(7): 2584-2589 DOI:10.1007/s11771-014-2216-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

JiH-j, LiuX-h, WangXin. ZrO2-SnO2 nanocomposite film containing superlattice ribbons [J]. Journal of Molecular Structure, 2010, 975(1/2/3): 47-52

[2]

LakshmiJ S, BerlinI J, DanielG P, ThomasP V, JoyK. Effect of calcination atmosphere on photoluminescence properties of nanocrystalline ZrO2 thin films prepared by sol-gel dip coating method [J]. Physica B, 2011, 406(15/16): 3050-3055

[3]

AndreH, AndriV, PeterH, ThomasG. Flame spray synthesis and characterisation of stabilised ZrO2 and CeO2 electrolyte nanopowders for SOFC applications at intermediate temperatures [J]. Journal of Electroceramics, 2009, 22(1): 40-46

[4]

SzkaradekK K. Laser melted ZrO2-Y2O3 thermal barrier obtained by plasma spraying method [J]. Journal of Alloys and Compounds, 2010, 505(2): 516-522

[5]

DoggaliP, WanghmareS, RayaluS, TeraokaY, LabhsetwarN. Transition metals supported on mesoporous ZrO2 for the catalytic control of indoor CO and PM emissions [J]. Journal of Molecular Catalysis A: Chemical, 2011, 347(1/2): 52-59

[6]

Reyes-Carmona, Moreno-TostR, Mérida-RoblesJ, Santamaría-GonzálezJ, Maireles-TorresP J, Jiménez-LópezA, MorettiE, LenardaM, RodríguezcastellónE. Preparation, characterization and catalytic applications of ZrO2 supported on low cost SBA-15 [J]. Adsorption, 2011, 17(3): 527-538

[7]

GoffJ P, HayesW, HullS, HutchingsM T, ClausenK N. Defect structure of yttria stabilised zirconia and its influence on the ionic conductivity at elevated temperatures [J]. Physical Review B, 1999, 59: 14202

[8]

SekiI, NagataK, AshinaT, TanabeJ. Solubility of calcium and oxygen in molten iron equilibrated with slag in CaO, Al2O3 or CaO-stabilized ZrO2 crucible at 1873 K [J]. ISIJ Intermational, 2011, 51(9): 1369-1374

[9]

RydenM, JohanssonM, LyngfeltA, MattissonT. NiO supported on Mg-ZrO2 as oxygen carrier for chemical-looping combustion and chemical-looping reforming [J]. Energy & Environmental Science, 2009, 2: 970-981

[10]

SimaF, RistoscuC, StefanN, DorciomanG, MihailescuI N, SimaL E, PetrescuS M, PalcevskiseE, KrastinsJ, ZaliteI. Shallow hydroxyapatite coatings pulsed laser deposited onto Al2O3 substrates with controlled porosity: correlation of morphological characteristics with in vitro testing results [J]. Applied Surface Science, 2009, 255(10): 5312-5317

[11]

ChengY-b, ThompsonD P. Role of anion vacancies in nitrogen-stabilized zirconia [J]. Journal of the American Ceramic Society, 1993, 76(3): 683-688

[12]

LerchM. Nitridation of zirconia [J]. Journal of the American Ceramic Society, 1996, 79(10): 2641-2644

[13]

LerchM, KrumeichF, HockR. Diffusion controlled formation of ß type phases in the system ZrO2-Zr3N4 [J]. Solid State Ionics, 1997, 95(1/2): 87-93

[14]

SharmaR, NaedeleD, SchwedaE. In situ studies of nitridation of zirconia [J]. Chemistry of Materials, 2001, 13: 4014-4018

[15]

WangD-n, LiangK-m, WanJ-in. Carbon contained zirconia ceramics [J]. Journal of the Chinese Ceramic Society, 1998, 26(2): 230-236

[16]

WangD-n, LiangK-ming. The effect of carbon on the phase stability of zirconia [J]. Journal of Materials Science Letters, 1998, 17(4): 343-344

[17]

ChenS-g, YinY-s, FanR-h, ShiR-x, LiJ, LuYao. First-principles study on the anion-doped stable c-ZrO2 [J]. Journal of Synthetic Crystals, 2003, 32(4): 300-305

[18]

ChenS-g, WangD-p, YuM-y, HuB-g, WangX, LiuY-c, YinY-sheng. Theoretical simulation of the interaction between neighboring oxygen ions for cation and anion-doped c-ZrO2 [J]. Materials Chemistry and Physics, 2007, 10: 28-34

[19]

InesK B, HansB, ChristianS, ThomasH. Anion diffusion in Y- and N-doped ZrO2 [J]. Physical Chemistry Chemical Physics, 2005, 7: 2061-2067

[20]

RödelT C, WangD, SuD S, LerchM, ProkofievA, LutherK D, AssmusW. Nitrogen-doped zirconia single crystals [J]. Crystal Research and Technology, 2006, 41(10): 950-954

[21]

DuttaG, HembramK P S S, RaoG M, WaghmareU V. Effects of O vacancies and C doping on dielectric properties of ZrO2: A first-principles study [J]. Applied Physics Letters, 2006, 89: 202904

[22]

ClarkS J, SegallM D, PickardC J, HasnipP J, ProbertM J, RefsonK, PayneM C. First principles methods using CASTEP [J]. Zeitschrift Fur Kristallographie, 2005, 220: 567-570

[23]

KrálikB, ChangE K, LouieS G. Structural properties and quasiparticle band structure of zirconia [J]. Physical Review B, 1998, 57: 7027-7036

[24]

VanderbiltD. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Physical Review B, 1990, 41: 7892-7895

[25]

GarciaJ C, ScolfaroL M R, LinoA T, FreireV N, FariasG A, SilvaC C, LeiteA H W, RodriguesS C P, Da SilvaE FJr. Structural, electronic, and optical properties of ZrO2 from ab initio calculations [J]. Journal of Applied Physics, 2006, 100: 104103

[26]

StefanovichE V, ShlugerA, CatlowC R A. Theoretical study of the stabilization of cubic-phase ZrO2 by impurities [J]. Physical Review B, 1994, 49: 11560

[27]

FrenchR H, GlassS J, OhuchiF S, XuY N, ChingW Y. Experimental and theoretical determination of the electronic structure and optical properties of three phase of ZrO2 [J]. Physical Review B, 1994, 49(8): 5133-5142

[28]

LiJ-b, WeiS-h, LiS-s, XiaJ-bai. Design of shallow acceptors in ZnO: First-principles band-structure calculations [J]. Physical Review B, 2006, 74: 081201

[29]

ZhangX D, GuoM L, LiW X, LiuC L. First-principles study of electronic and optical properties in wurtzite Zn1−xCdxO [J]. Journal of Applied Physics, 2008, 103: 063721

[30]

WengH-m, DongJ-m, FukumuraT, KawasakiM, KawazoeY. First principles investigation of the magnetic circular dichroism spectra of Co-doped anatase and rutile TiO2 [J]. Physical Review B, 2006, 73: 121201

[31]

TianF-h, LiuC-bu. DFT description on electronic structure and optical absorption properties of anionic S-doped anatase TiO2 [J]. Journal of Physical Chemistry B, 2006, 110: 17866-17871

[32]

GuoM-l, DuJ-lin. First-principles study of electronic structures and optical properties of Cu, Ag, and Au-doped anatase TiO2 [J]. Physica B, 2012, 407: 1003-1007

[33]

ShenX-chuThe optical property of semiconductor [M], 1992, Beijing, Science Press: 1-43

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/