Fracture of thermal barrier coating with multiple surface cracks and delaminations: Interlayer effect

Xue-ling Fan , Rong Xu , M. Kikuchi

Journal of Central South University ›› 2014, Vol. 21 ›› Issue (7) : 2579 -2583.

PDF
Journal of Central South University ›› 2014, Vol. 21 ›› Issue (7) : 2579 -2583. DOI: 10.1007/s11771-014-2215-x
Article

Fracture of thermal barrier coating with multiple surface cracks and delaminations: Interlayer effect

Author information +
History +
PDF

Abstract

Multiple surface cracks and interfacial delamination are the major failure mechanisms in film/substrate systems. The effect of interlayer upon the failure mechanisms of interfacial delamination concomitant to surface crack was explored. Finite element model was developed to obtain the stress and energy release rate (ERR), which governs the propagation of interface cracks. The dependences of delamination upon the geometry and constitutive properties of interlayer were examined. The results indicate that the effect of elastic modulus of interlayer on the steady state ERR is insignificant. In cases of different geometrical parameters, however, the steady ERR decreases with the increase of the interlayer thickness. These findings lead to the conclusion that the interlayer constraint has significant effect on the ERR and thus coating life, which can be adopted to modify the ceramic top coat.

Keywords

thermal barrier coating / delamination / interlayer / energy release rate

Cite this article

Download citation ▾
Xue-ling Fan, Rong Xu, M. Kikuchi. Fracture of thermal barrier coating with multiple surface cracks and delaminations: Interlayer effect. Journal of Central South University, 2014, 21(7): 2579-2583 DOI:10.1007/s11771-014-2215-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

PadtureN P, GellM, JordanE H. Thermal barrier coatings for gas-turbine engine applications [J]. Science, 2002, 296(5566): 280-284

[2]

ClarkeD R, LeviC G. Materials design for the next generation thermal barrier coatings [J]. Annual Review Materials Research, 2003, 33: 383-417

[3]

EvansA G, ClarkeD R, LeviC G. The influence of oxides on the performance of advanced gas turbines [J]. Journal of the European Ceramic Society, 2008, 28: 1405-1419

[4]

EvansA G, MummD R, HutchinsonJ W, MeierG H, PettitF S. Mechanisms controlling the durability of thermal barrier coatings [J]. Progress in Materials Science, 2001, 46(5): 505-553

[5]

NichollsJ R, DeakinM J, RickerbyD S. A comparison between the erosion behaviour of thermal spray and electron beam physical vapour deposition thermal barrier coatings [J]. Wear, 1999, 233/234/235: 352-361

[6]

ChenX, HeM Y, SpitsbergI, FleckN A, HutchinsonJ W, EvansA G. Mechanisms governing the high temperature erosion of thermal barrier coatings [J]. Wear, 2004, 256: 735-746

[7]

BegleyM R, WadleyH N G. Delamination resistance of thermal barrier coatings containing embedded ductile layers [J]. Acta Materialia, 2012, 60: 2497-2508

[8]

BegleyM R, WadleyH N G. Delamination of ceramic coatings with embedded metal layers [J]. Journal of the American Ceramic Society, 2011, 94(S1): S96-S103

[9]

ZhaoH B, BegleyM R, HeuerA, Sharghi-MoshtaginR, WadleyH N G. Reaction, transformation and delamination of samarium zirconate thermal barrier coatings [J]. Surface & Coatings Technology, 2011, 205: 4355-4365

[10]

YuZ, ZhaoH B, WadleyH N G. The vapor deposition and oxidation of platinum- and yttria-stabilized zirconia multilayers [J]. Journal of the European Ceramic Society, 2011, 94(8): 2671-2679

[11]

GuoH B, VaßenR, StöverD. Atmospheric plasma sprayed thick thermal barrier coatings with high segmentation crack density [J]. Surface & Coatings Technology, 2004, 186: 353-63

[12]

ZhouB, KokiniK. Effect of pre-existing surface crack morphology on the interfacial thermal fracture of thermal barrier coatings: a numerical study [J]. Materials Science and Engineering A, 2003, 8(1/2): 271-279

[13]

ZhouB, KokiniK. Effect of surface pre-crack morphology on the fracture of thermal barrier coatings under thermal shock [J]. Acta materialia, 2004, 52(14): 4189-4197

[14]

ThoulessM D, LiZ, DouvilleN J, TakayamaS. Periodic cracking of films supported on compliant substrates [J]. Journal of the Mechanics and Physics of Solids, 2011, 59: 1927-1937

[15]

FanX L, ZhangW X, WangT J, LiuG W, ZhangJ H. Investigation on periodic cracking of elastic film/substrate system by the extended finite element method [J]. Applied Surface Science, 2011, 257(15): 6718-6724

[16]

ZhangW X, FanX L, WangT J. The surface cracking behavior in air plasma sprayed thermal barrier coating system incorporating interface roughness effect [J]. Applied Surface Science, 2011, 258: 811-817

[17]

FanX L, ZhangW X, WangT J, SunQ. The effect of thermally grown oxide on multiple surface cracking in air plasma sprayed thermal barrier coating system [J]. Surface & Coatings Technology, 2012, 208: 7-13

[18]

WangT J, FanX L, ZhangW XA novel thermal barrier coating system [P], 2012

[19]

FanX L, XuR, ZhangW X, WangT J. Effect of periodic surface cracks on the interfacial fracture of thermal barrier coating system [J]. Applied Surface Science, 2012, 258: 9816-9823

[20]

HutchinsonJ W, SuoZ. Mixed mode cracking in layered materials [J]. Advances in Applied Mechanics, 1992, 29: 63-191

[21]

ZhangW X, WangT J, LiL X. Numerical analysis of the transverse strengthening behavior of fiber-reinforced metal matrix composites [J]. Computational Materials Science, 2007, 39: 684-696

AI Summary AI Mindmap
PDF

100

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/