Near-fault directivity pulse-like ground motion effect on high-speed railway bridge
Ling-kun Chen , Nan Zhang , Li-zhong Jiang , Zhi-ping Zeng , Ge-wei Chen , Wei Guo
Journal of Central South University ›› 2014, Vol. 21 ›› Issue (6) : 2425 -2436.
Near-fault directivity pulse-like ground motion effect on high-speed railway bridge
The vehicle-track-bridge (VTB) element was used to investigate how a high-speed railway bridge reacted when it was subjected to near-fault directivity pulse-like ground motions. Based on the PEER NAG Strong Ground Motion Database, the spatial analysis model of a vehicle-bridge system was developed, the VTB element was derived to simulate the interaction of train and bridge, and the elasto-plastic seismic responses of the bridge were calculated. The calculation results show that girder and pier top displacement, and bending moment of the pier base increase subjected to near-fault directivity pulse-like ground motion compared to far-field earthquakes, and the greater deformation responses in near-fault shaking are associated with fewer reversed cycles of loading. The hysteretic characteristics of the pier subjected to a near-fault directivity pulse-like earthquake should be explicitly expressed as the bending moment-rotation relationship of the pier base, which is characterized by the centrally strengthened hysteretic cycles at some point of the loading time-history curve. The results show that there is an amplification of the vertical deflection in the girder’s mid-span owing to the high vertical ground motion. In light of these findings, the effect of the vertical ground motion should be used to adjust the unconservative amplification constant 2/3 of the vertical-to-horizontal peak ground motion ratio in the seismic design of bridge.
element / near-fault ground motion / directivity pulse / high-speed railway bridge / earthquake response
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
GB50111-2010Code for seismic design of railway engineering [S], 2010, Beijing, China Planning Press |
| [43] |
FEMA-356Prestandard and commentary for seismic rehabilitation of buildings [S], 2000, Washington DC, Federal Emergency Management Agency |
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
/
| 〈 |
|
〉 |