First-principles study on mechanical properties of LaMg3 and LaCuMg2

Ming-hui Wang , Rong-kai Pan , Peng-bo Li , Nan Bian , Bi-yu Tang , Li-ming Peng , Wen-jiang Ding

Journal of Central South University ›› 2014, Vol. 21 ›› Issue (6) : 2136 -2142.

PDF
Journal of Central South University ›› 2014, Vol. 21 ›› Issue (6) : 2136 -2142. DOI: 10.1007/s11771-014-2163-5
Article

First-principles study on mechanical properties of LaMg3 and LaCuMg2

Author information +
History +
PDF

Abstract

With the substitution of part Mg in LaMg3 by Cu, the elastic constants C11 and C12 increase while C44 decreases, implying an enhanced Poisson effect and smaller resistance to 〈001〉(100) shear. Furthermore, the bulk modulus B increases, while the shear modulus G, elastic modulus E and anisotropic ratio A are reduced. The calculated Debye temperature of LaCuMg2 is lower, implying the weaker interaction between atoms in LaCuMg2. Then, the stress-strain curves in entire range and the ideal strength at critical strain are studied. The present results show that the lowest ideal tensile strength for LaMg3 and LaCuMg2 is in the 〈100〉 direction. The ideal shear strength on the

\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\left\langle {1 \bar 1 0} \right\rangle \left( {110} \right)$$\end{document}
slip system of LaMg3 is greater than LaCuMg2. The density of states and charge density distribution are further studied to understand the inherent mechanism of the mechanical properties.

Keywords

first-principle calculations / elastic constant / ideal strength / mechanical properties / electronic structure

Cite this article

Download citation ▾
Ming-hui Wang, Rong-kai Pan, Peng-bo Li, Nan Bian, Bi-yu Tang, Li-ming Peng, Wen-jiang Ding. First-principles study on mechanical properties of LaMg3 and LaCuMg2. Journal of Central South University, 2014, 21(6): 2136-2142 DOI:10.1007/s11771-014-2163-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

GundeP, HänziA, SologubenkoA, UggowitzerP. High-strength magnesium alloys for degradable implant applications [J]. Materials Science and Engineering A, 2011, 528(3): 1047-1054

[2]

AghionE, BronfinB. Magnesium alloys development towards the 21st century [J]. Materials Science Forum, 2000, 350: 19-30

[3]

SongG L, AtrensA. Corrosion mechanisms of magnesium alloys [J]. Advanced Engineering Materials, 2000, 1(1): 11-33

[4]

TaoS, NottenP, VanS R, JansenA. First-principles predictions of potential hydrogen storage materials: Nanosized Ti (core)/Mg (shell) hydrides [J]. Physical Review B, 2011, 83(19): 195403

[5]

WróbelJ, HectorL, WolfW, ShangS, LiuZ, KurzydlowskiK. Thermodynamic and mechanical properties of lanthanum-magnesium phases from density functional theory [J]. J Alloy Compd, 2011, 512(1): 296-310

[6]

NayyeriG, MahmudiR, SalehiF. The microstructure, creep resistance, and high-temperature mechanical properties of Mg-5Sn alloy with Ca and Sb additions, and aging treatment [J]. Materials Science and Engineering A, 2010, 527(21/22): 5353-5359

[7]

OuyangL Z, QinF X, ZhuM. The hydrogen storage behavior of Mg3La and Mg3LaNi0.1 [J]. Scripta materialia, 2006, 55(12): 1075-1078

[8]

DenegriS, GiovanniniM, SacconeA. Constitutional properties of the La-Cu-Mg system at 400 °C [J]. J Alloy Compd, 2007, 427(1/2): 134-141

[9]

HohenbergP, KohnW. Inhomogeneous Electron Gas* [J]. Physical Review B, 1964, 136(3): B864

[10]

KresseG, JoubertD. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Physical Review B, 1999, 59(3): 1758

[11]

WangC, KleinB, KrakauerH. Theory of magnetic and structural ordering in iron [J]. Physical review letters, 1985, 54(16): 1852-1855

[12]

BlöchlP E. Projector augmented-wave method [J]. Physical Review B, 1994, 50(24): 17953

[13]

MonkhorstH J, PackJ D. Special points for brillouin-zone integrations [J]. Physical Review B, 1976, 13(12): 5188-5192

[14]

ZubovV, TretiakovN, TeixeiraR J, SanchezO J. Calculations of the thermal expansion, cohesive energy and thermodynamic stability of a van der Waals crystal-fullerene C60 [J]. Physics Letters A, 1994, 194(3): 223-227

[15]

GercekH. Poisson’s ratio values for rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(1): 1-13

[16]

LiuY, LiuL, WangS, YeH. First-principles study of shear deformation in TiAl and Ti3Al [J]. Intermetallics, 2007, 15(3): 428-435

[17]

MattesiniM, AhujiR, JohanssonB. Cubic Hf3N4 and Zr3N4: A class of hard materials [J]. Physical Review B, 2003, 68(18): 184108

[18]

OuyangY F, TaoX M, FengY P, DuY, ZhongX P. First-principles calculations of elastic constants of DO3-Mg3 RE (RE= Sc, Y, La, Ce, Lu) [J]. Physica Scripta, 2008, 78: 065601

[19]

HuangZ W, ZhaoY H, HouH, ZhaoY H, NiuX F, HanP D. Structural, thermodynamics and elastic properties of Mg17Al12, Al2Y and Al4Ba phases by first-principles calculations [J]. Journal of Central South University, 2012, 19(6): 1427-1481

[20]

PettiforD. Theoretical predictions of structure and related properties of intermetallics [J]. Materials science and technology, 1992, 8(4): 345-349

[21]

AndersonO L. A simplified method for calculating the Debye temperature from elastic constants[J]. Journal of Physics and Chemistry of Solids, 1963, 24(7): 909-917

[22]

ZhangR, ShengS, VeprekS. First principles studies of ideal strength and bonding nature of AlN polymorphs in comparison to TiN [J]. Appl Phys Lett, 2007, 91(3): 031906-031906-3

[23]

LiaoT, WangJ, ZhouY. Deformation modes and ideal strengths of ternary layered Ti2AlC and Ti2AlN from first-principles calculations [J]. Physical Review B, 2006, 73(21): 214109

[24]

LiuY, HuW C, LiD, ZengX Q, XuC S, YangX J. First-principles investigation of structural and electronic properties of MgCu2 Laves phase under pressure [J]. Intermetallics, 2012, 31: 257-263

AI Summary AI Mindmap
PDF

90

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/