TiO2/graphene nanocomposites as anode materials for high rate lithium-ion batteries

Yi-ping Tang , Shi-ming Wang , Xiao-xu Tan , Guang-ya Hou , Guo-qu Zheng

Journal of Central South University ›› 2014, Vol. 21 ›› Issue (5) : 1714 -1718.

PDF
Journal of Central South University ›› 2014, Vol. 21 ›› Issue (5) : 1714 -1718. DOI: 10.1007/s11771-014-2114-1
Article

TiO2/graphene nanocomposites as anode materials for high rate lithium-ion batteries

Author information +
History +
PDF

Abstract

A simple strategy to prepare a hybrid of nanocomposites of anatase TiO2/graphene nanosheets (GNS) as anode materials for lithium-ion batteries was reported. The morphology and crystal structure were studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The electrochemical performance was evaluated by galvanostatic charge-discharge tests and alternating current (AC) impedance spectroscopy. The results show that the TiO2/GNS electrode exhibit higher electrochemical performance than that of TiO2 electrode regardless of the rate. Even at 500 mA/g, the capacity of TiO2/GNS is 120.3 mAh/g, which is higher than that of TiO2 61.6 mAh/g. The high performance is attributed to the addition of graphene to improve electrical conductivity and reduce polarization.

Keywords

TiO2 / graphene nanosheets / lithium-ion batteries / anode materials

Cite this article

Download citation ▾
Yi-ping Tang, Shi-ming Wang, Xiao-xu Tan, Guang-ya Hou, Guo-qu Zheng. TiO2/graphene nanocomposites as anode materials for high rate lithium-ion batteries. Journal of Central South University, 2014, 21(5): 1714-1718 DOI:10.1007/s11771-014-2114-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ChenX B, MaoS S. Titanium dioxide nanomaterials: Synthesis, properties, modifications and applications [J]. Chemical Reviews, 2007, 107(7): 2891-2959

[2]

DengD, KimM G, LeeJ Y, ChoJ. Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries [J]. Energy & Environmental Science, 2009, 2(8): 818-837

[3]

SubramanianV, KarkiA, GnanasekarK I, EddyF P, RambabuB. Nanocrystalline TiO2 (anatase) for Li-ion batteries [J]. Journal of Power Sources, 2006, 159(1): 186-192

[4]

DasS K, DarmakollaS, BhattacharyyaA J. High lithium storage in micrometre sized mesoporous spherical self-assembly of anatase titania nanospheres and carbon [J]. Journal of Materials Chemistry, 2010, 20(8): 1600-1606

[5]

WangX Y, XieK Y, LiJ, LaiY Q, ZhangZ A, LiuY X. Synthesis and electrochemical performance of TiO2-B as anode material [J]. Journal of Central South University of Technology, 2011, 18(2): 406-410

[6]

CahenD, HodesG, GratzelM, GuillemolesJ F, RiessI. Nature of photovoltaic action in dye-sensitized solar cells [J]. The Journal of Physical Chemistry B, 2000, 104(9): 2053-2059

[7]

KavanL, AttiaA, LenzmannF, ElderS H, GratzelM. Lithium insertion into zirconia-stabilized mesoscopic TiO2 (anatase) [J]. Journal of the Electrochemical Society, 2000, 147(8): 2897-2902

[8]

YangZ-g, ChoiD, KerisitS, RossoK M, WangD-h, ZhangJ. Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review [J]. Journal of Power Sources, 2009, 192(2): 588-598

[9]

KangJ H, PeakS M, HwangS J, ChoyJ H. Pre-swelled nanostructured electrode for lithium ion battery: TiO2-pillared layered MnO2 [J]. Journal of Materials Chemistry, 2010, 20: 2033-2038

[10]

PEAK S M, KANG J H, JUNG H, HWANG S J, CHOY J H. Enhanced lithium storage capacity and cyclic performance of nanostructured TiO2-MoO3 hybrid electrode [J]. Journal of Chemistry Communication, 2009, 7536-7538.

[11]

RenY, HardwickL J, BruceP G. Lithium intercalation into mesoporous anatase with an ordered 3D pore structure [J]. Angewandte Chemie-International Edition, 2010, 122(14): 2624-2628

[12]

ZhouG-m, WangD-w, LiF, ZhangL-l, LiN, WuZ-s, WenL, LuG-q, ChengH-ming. Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries [J]. Chemistry of Materials, 2010, 22(18): 5306-5313

[13]

WangH-l, CuiL-f, YangY, CasalongueH S, RobinsonJ T, LiangY-y, CuiY, DaiH-jie. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries [J]. Journal of the American Chemical Society, 2010, 132(40): 13978-13980

[14]

WuZ-s, RenW-c, WenL, GaoL-b, ZhaoJ-p, ChenZ-p, ZhouG-m, LiF, ChengH-Ming. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance [J]. ACS Nano, 2010, 4(6): 3187-3194

[15]

PaekS M, YooE, HonmaI. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure [J]. Nano Letters, 2009, 9(1): 72-75

[16]

WangD-h, ChoiD W, LiJ, YangZ-g, NieZ-m, KouR, HuD-h, WangC-m, SarafL V, ZhangJ-g, AksayI A, LiuJun. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion [J]. ACS Nano, 2009, 3(4): 907-914

[17]

LiangM-h, ZhiL-jie. Graphene-based electrode materials for rechargeable lithium batteries [J]. Journal of Materials Chemistry, 2009, 19(31): 5871-5878

[18]

StankovichS, DikinD A, DommettG H B, KohlhaasK M, ZimneyE J, StachE A, PinerR D, NguyenS T, RuoffR S. Graphene-based composite materials [J]. Nature, 2006, 442: 282-286

[19]

ShiY, WenL, LiF, ChengH-Ming. Nanosized Li4Ti5O12/graphene hybrid materials with low polarization for high rate lithium ion batteries [J]. Journal of Power Sources, 2011, 196(20): 8610-8617

[20]

ZhuN, LiuW, XueM-q, XieZ, ZhaoD, ZhangM-n, ChenJ-t, CaoT-bing. Graphene as a conductive additive to enhance the high-rate capabilities of electrospun Li4Ti5O12 for lithium-ion batteries [J]. Electrochimica Acta, 2010, 55(20): 5813-5818

[21]

WuZ-s, RenW-c, GaoL-b, LiuB-l, JiangC-b, ChengH-Ming. Synthesis of high-quality graphene with a pre-determined number of layers [J]. Carbon, 2009, 47(2): 493-499

[22]

BaiH, XuY-x, ZhaoL, LiC, ShiG-quan. Non covalent functionalization of graphene sheets by sulfonated [J]. Chemical Communications, 2009, 13: 1667-1669

AI Summary AI Mindmap
PDF

97

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/