First principles calculation on electronic structure, chemical bonding, elastic and optical properties of novel tungsten triboride

Yi-fu Wang , Qing-lin Xia , Yan Yu

Journal of Central South University ›› 2014, Vol. 21 ›› Issue (2) : 500 -505.

PDF
Journal of Central South University ›› 2014, Vol. 21 ›› Issue (2) : 500 -505. DOI: 10.1007/s11771-014-1967-7
Article

First principles calculation on electronic structure, chemical bonding, elastic and optical properties of novel tungsten triboride

Author information +
History +
PDF

Abstract

The electronic structures, chemical bonding, elastic and optical properties of the novel hP24 phase WB3 were investigated by using density-functional theory (DFT) within generalized gradient approximation (GGA). The calculated energy band structures show that the hP24 phase WB3 is metallic material. The density of state (DOS) and the partial density of state (PDOS) calculations show that the DOS near the Fermi level is mainly from the W 5d and B 2p states. Population analysis suggests that the chemical bonding in hP24-WB3 has predominantly covalent characteristics with mixed covalent-ionic characteristics. Basic physical properties, such as lattice constant, bulk modulus, shear modulus and elastic constants Cij were calculated. The elastic modulus E and Poisson ratio ν were also predicted. The results show that hP24-WB3 phase is mechanically stable and behaves in a brittle manner. Detailed analysis of all optical functions reveals that WB3 is a better dielectric material, and reflectivity spectra show that WB3 can be promised as good coating material in the energy regions of 8.5–11.4 eV and 14.5–15.5 eV.

Keywords

hP24-WB3 / first principles calculation / electronic structure / chemical bonding, elastic properties / optical properties

Cite this article

Download citation ▾
Yi-fu Wang, Qing-lin Xia, Yan Yu. First principles calculation on electronic structure, chemical bonding, elastic and optical properties of novel tungsten triboride. Journal of Central South University, 2014, 21(2): 500-505 DOI:10.1007/s11771-014-1967-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LevineJ B, TolbertS H, KanerR B. Advancements in the search for superhard ultra-incompressible metal borides [J]. Adv Funct Mater, 2009, 19: 3519-3533

[2]

WaskowskaA, GerwardL, StaunO J, RameshB K, VaitheeswaranG, KanchanaV, SvaneA, FilipovV B, LevchenkoG, LyaschenkoA. Thermoelastic properties of ScB2, TiB2, YB4 and HoB4: Experimental and theoretical studies [J]. Acta Materialia, 2011, 59: 4886-4894

[3]

GouH-y, LiZ-p, NiuH, GaoF-m, ZhangJ-w, EwingR C, LianJ. Unusual rigidity and ideal strength of CrB4 and MnB4 [J]. Appl Phys Lett, 2012, 100: 111907

[4]

ChungH Y, WeinbergerM B, LevineJ B. Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure [J]. Science, 2007, 316(5823): 436-439

[5]

HebbacheM, StuparevicL, ZivkovicD. A new superhard material: Osmium diboride OsB2 [J]. Solid State Commun, 2006, 139(5): 227-231

[6]

GuQ F, KraussG, SteurerW. Transition metal borides: Superhard versus ultra-incompressible [J]. Adv Mater, 2008, 20(19): 3620-3627

[7]

RauJ V, LatiniA, TeghilR, De BonisA, FoscaM, CaminitiR, AlbertiniV R. Superhard tungsten tetraboride films prepared by pulsed laser deposition method [J]. ACS Appl Mater & Interf, 2011, 3(9): 3738-3743

[8]

MohammadiR, LechA T, XieM. Tungsten tetraboride, an inexpensive superhard material [J]. Proc Natl Acad Sci USA, 2011, 108(27): 10958-10962

[9]

IvanovskiiA L. Platinum group metal nitrides and carbides: synthesis, properties and simulation [J]. Russ Chem Rev, 2009, 78: 303-348

[10]

ZhengJ C. Superhard hexagonal transition metal and its carbide and nitride: Os, OsC, and OsN [J]. Phys Rev B, 2005, 72: 052105

[11]

LiY W, MaY M. Crystal structure and physical properties of OsN: First-principle calculations [J]. Solid State Commun, 2010, 150(15/16): 759-762

[12]

DuX P, WangY X, LoV C. Investigation of tetragonal ReN2 and WN2 with high shear moduli from first-principles calculations [J]. Phys Letts A, 2010, 374(25): 2569-2574

[13]

PengF, ChenD, YangX D. First-principles calculations on elasticity of OsN2 under pressure [J]. Solid State Commun, 2009, 149: 2135-2138

[14]

LiangY, GouY, YuanX, ZhongZ, ZhangW. Unexpectedly hard and highly stable WB3 with a noncompact structure [J]. Chem Phys Letts, 2013, 580: 48-52

[15]

SegallM D, Lindan PhilipJ D, ProbertM J, PickardC J, HasnipP J, ClarkS J, PayneM C. First-principles simulation: Ideas, illustrations and the CASTEP code [J]. J Phys: Condens Matter, 2002, 14(11): 2717-2744

[16]

ClarkS J, SegallM D, PickardC J, HasnipP J, ProbertM J, RefsonK, PayneM C. First principles methods using CASTEP [J]. Zeitschrift fuer Kristallographie, 2005, 220(5/6): 567-570

[17]

PerdewJ P, BurkeK, ErnzerhofM. Generalized gradient approximation made simple [J]. Phys Rev Lett, 1996, 77: 3865-3868

[18]

MonkhorstH J, PackJ D. Special points for Brillouin-zone integrations [J]. Phys Rev B, 1976, 13: 5188-5192

[19]

HermetP, Goumri-saidS, KanounM B, HenrardL. First-principles investigation of the physical properties of magnesium nitridoboride [J]. J Phys Chem C, 2009, 113: 4997-5003

[20]

XiaQ L, YiJ H, LiY F, PengY D, WangH Z, ZhouC S. First-principles investigations of the band structure and optical properties of γ-boron [J]. Solid State Commun, 2010, 150: 605-608

[21]

PonceC A, CasaliR A, CaravacaM A. Ab initio study of mechanical and thermo-acoustic properties of tough ceramics: applications to HfO2 in its cubic and orthorhombic phase [J]. J Phys Condens Mater, 2008, 20: 045213

[22]

BouhemadouA, KhenataR, ChegaarM, MaabedS. First-principles calculations of structural, elastic, electronic and optical properties of the antiperovskite AsNMg3 [J]. Phys Lett A, 2007, 371: 337-343

[23]

SheinI R, IvanovskiiA L. Elastic properties and chemical bonding in ternary arsenide SrFe2As2 and quaternary oxyarsenide LaFeAsO—Basic phases for new 38–55 K superconductors from first principles [J]. Physica C, 2009, 469: 15-19.

[24]

SheinI R, IvanovskiiA L. Elastic properties of quaternary oxyarsenide LaOFeAs and LaOFeP as basic phases for new 26–52 K superconducting materials from first principles [J]. Scripta Materialia, 2008, 59: 1099-1102

[25]

ShiY M, YeS L. Chemical bonding and elastic properties of quaternary arsenide oxides YZnAsO and LaZnAsO investigated by first principles [J]. Trans Nonferrous Met Soc China, 2011, 21: 1378-1382

[26]

HillR. The elastic behaviour of a crystalline aggregate [J]. Proc Phys Soc London A, 1952, 65: 349-355

[27]

XiaQ L, YiJ H, LiY F, PengY D, WangH Z, ZhouC S. First-principles study of electronic structure and elastic properties of C doping Mg(B1−xCx)2 [J]. Mater Sci & Engin Powd Metall, 2011, 16(1): 7-12

[28]

HainesJ, LegerJ M, BocquillonG A. Sythesis and design of superhard materials [J]. Rev Mater Res, 2001, 31: 1-23

[29]

AndersonO L. A simplified method for calculating the Debye temperature from elastic constants [J]. J Phys Chem Solids, 1963, 24(7): 909-917

[30]

ChungD H, BuessemW RAnisotropy in single crystal refractory compounds [M], 1968, New York, Plenum Press: 217

[31]

SunJ, WangH-t, HeJ-l, TianY-jun. Ab initio investigations of optical properties of the high-pressure phases of ZnO [J]. Phys Rev B, 2005, 71(12): 125132

[32]

ChengY C, WuX L, ZhuJ, XuL L, LiS H, ChuP K. Optical properties of rocksalt and zinc blende AlN phases: First-principles calculations [J]. J Appl Phys, 2008, 103: 073707

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/