Preparation and characterization of Cu-doped mesoporous CeO2 for CO oxidation

Jun-jie Tian , Wei Na , Hua Wang , Wen-gui Gao

Journal of Central South University ›› 2014, Vol. 21 ›› Issue (2) : 482 -486.

PDF
Journal of Central South University ›› 2014, Vol. 21 ›› Issue (2) : 482 -486. DOI: 10.1007/s11771-014-1964-x
Article

Preparation and characterization of Cu-doped mesoporous CeO2 for CO oxidation

Author information +
History +
PDF

Abstract

Mesoporous CeO2 was first synthesized by hydrothermal method, and then used to synthesize different contents of CuO)x/CeO2 (x: molar ratio of Cu to Ce) by deposition-precipitation method. These materials were characterized by X-ray diffraction (XRD), N2 adsorption and desorption, H2 temperature programmed reduction (H2-TPR) and O2 temperature programmed desorption (O2-TPD) to study the crystal structure, surface area, and the mechanism of CO oxidation. The results show that, on XRD patterns, no evidence of CuO diffraction peaks is present until Cu loading is increased to 20%. The BET surface area decreases noticeably with the increase of Cu content. Compared with other samples, the better reducibility and activity oxygen species of (CuO)10%/CeO2 coincide with its better catalytic activity.

Keywords

mesoporous CeO2 / catalytic activity / CuO/CeO2 / CO oxidation

Cite this article

Download citation ▾
Jun-jie Tian, Wei Na, Hua Wang, Wen-gui Gao. Preparation and characterization of Cu-doped mesoporous CeO2 for CO oxidation. Journal of Central South University, 2014, 21(2): 482-486 DOI:10.1007/s11771-014-1964-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ShanW-j, ShenW-j, LiCan. Structural characteristics and redox behaviors of Ce1−xCuxOy solid solution [J]. Chemistry of Materials, 2003, 25(15): 4761-4767

[2]

KresgeC T, LeonowicaM E, RothW J, VartuliJ C. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template-mechanism [J]. Nature, 1992, 359(6397): 710-712

[3]

BeckJ S, VartuliJ C, RothW J, LeonowicaM E, KresgeC T, SchmittK D, ChuC T W, OlsonD H, SheppardE W. A new family of mesoporous molecular sieves prepared with liquid crystal templates [J]. Journal of the American Chemical Society, 1992, 114(27): 10834-10843

[4]

LiangX, XiaoJ-j, ChenB-h, LiY-dong. Catalytically stable and active CeO2 mesoporous spheres [J]. Inorganic Chemistry, 2010, 49(18): 8188-8190

[5]

LahaS C, RyooR. Synthesis of thermally stable mesoporous cerium oxide with nanocrystalline frameworks using mesoporous silica templates [J]. Chemical Communications, 2003, 39(17): 2138-2139

[6]

PerrichonV, RetailleauL, BazinP, DaturiM, LavalleyJ C. Metal dispersion of CeO2-ZrO2 supported platinum catalysts measured by H2 or CO chemisorptions [J]. Applied Catalysis A: General, 2004, 260(1): 1-8

[7]

YingF, WangS-j, Chak-TongA, Suk-YinLai. Highly active and stable mesoporous Au/CeO2 catalysts prepared form MCM-48 hard-template [J]. Microporous and Mesoporous Materials, 2011, 142(1): 308-315

[8]

WatanabeK, MiyaoT, HigashiyamaK, YamashitaH, WatanabeM. Preparation of a mesoporous ceria-zirconia supported Ni-Fe catalyst for the high temperature water-gas shift reaction [J]. Chemical Communications, 2011, 12(11): 976-979

[9]

LiK-z, WangH, WeiY-g, LiuM-chun. Preparation and characterization of Ce1−xFexO2 complex oxides and its catalytic activity for methane selective oxidation [J]. Journal of Rare Earths, 2008, 26(2): 245-249

[10]

TsonchevaT, RoggenbuckJ, TiemannM, IvanovaL, PanevaD, MitovI, MinchevC. Iron oxide nanoparticles supported on mesoporous MgO and CeO2: A comparative physicochemical and catalytic study [J]. Microporous and Mesoporous Materials, 2008, 110(2/3): 339-346

[11]

MayernickD A, JanikM J. Methane activation and oxygen vacancy formation over CeO2 and Zr, Pd substituted CeO2 surfaces [J]. Journal of Physical Chemistry C, 2008, 112(38): 14955-14964

[12]

SinhaA K, SuzukiK. Preparation and characterization of novel mesoporous ceria-titania [J]. Journal of Physical Chemistry B, 2005, 109(5): 1708-1714

[13]

JobbagyM, MarinoF, SchobrodB, BaronettiG, LabordeM. Synthesis of copper-promoted CeO2 catalysts [J]. Chemistry of Materials, 2006, 18(7): 1945-1950

[14]

YangF, GracianiJ, EvansJ, LiuP, HrbrkJ, SanzJ F, RodriguezJ A. CO oxidation on inverse CeOx/Cu(111) catalysts: High catalytic activity and ceria-promoted dissociation of O2 [J]. Journal of the American Chemical Society, 2011, 133(10): 3444-3451

[15]

HornesA, HungriaA B, BeraP, CamaraA L, Fernandez-GarciaM, Martinez-AriasA, BarrioL, EstrellaM, ZhouG, FonsecaJ J, HansonJ C, RodriguezJ A. Inverse CeO2/CuO catalyst as an alternative to classical direct configurations for preferential oxidation of CO in hydrogen-rich stream [J]. Journal of the American Chemical Society, 2010, 132(1): 34-35

[16]

MacielC G, Freitas-SilvaT D, HirookaM I, BelgacemM N, AssafJ M. Effect of nature of ceria support in CuO/CeO2 catalyst for PROX-CO reaction [J]. Fuel, 2012, 97: 245-252

[17]

HeM, LuoM-f, Fangping. Characterization of CuO species and thermal solid-solid interaction in CuO/CeO2-Al2O3 catalyst by in-situ XRD, Raman spectroscopy and TPR [J]. Journal of Rare Earths, 2006, 24(2): 188-195

[18]

ZhangG-j, ShenZ-r, LiuM, GuoC-h, SunP-c, YuanZ-y, LiB-h, DingD-t, ChenT-hong. Synthesis and characterization of mesoporous ceria with hierarchical nanoarchitecture controlled by amino acids [J]. Journal of Physical Chemistry B, 2006, 110(51): 25782-25790

[19]

PuertolasB, SolsonaB, AgouramS, MurilloR, MastralA M, ArandaA, TaylorS H, GarciaT. The catalytic performance of mesoporous cerium oxides prepared through a nanocasting route for the total oxidation of naphthalene [J]. Applied Catalysis B: Environmental, 2010, 93(3/4): 395-405

[20]

XuY-q, CaoY, XiaZ-ning. Microwave radiation one-pot synthesis of chloropropyl-functionalized mesoporous MCM-4 [J]. Journal of Central South University, 2012, 19(8): 2130-2135

[21]

LiK-z, WangH, WeiY-g, LiuM-chun. Catalytic performance of cerium iron complex oxides for partial oxidation of methane to synthesis gas [J]. Journal of Rare Earths, 2008, 26(5): 705-710

[22]

RaoK N, BharaliP, ThrimurthuluG, ReddyB M. Supported copper-ceria catalysts for low temperature CO oxidation [J]. Chemical Communications, 2010, 11(10): 863-866

[23]

AyastuyJ L, GurbaniA, Gonzalez-MarcosM P, Gutierrez-OrtizM A. Effect of copper loading on copper-ceria catalysts performance in CO selective oxidation for fuel application [J]. International Journal of Hydrogen Energy, 2010, 35(3): 1232-1244

[24]

BarosaA L, HerguidoJ, SantamariaJ. Methane combustion over unsupported iron oxide catalysts [J]. Catalysis Today, 2001, 64(1/2): 43-50

[25]

LiK-z, WangH, WeiY-g, YanD-xia. Transformation of methane into synthesis gas using the redox property of Ce-Fe mixed oxides: Effect of calcinations temperature [J]. International Journal of Hydrogen Energy, 2011, 36(5): 3471-3482

[26]

FuM-l, YueX-h, YeD-q, OuyangJ-h, HuangB-c, WuJ-l, LiangHong. Soot oxidation via CuO doped CeO2 catalysts prepared using coprecipitation and citrate acid complex-combustion synthesis [J]. Catalysis Today, 2010, 153(3/4): 125-132

[27]

QinJ-w, LuJ-f, CaoM-h, HuC-wen. Synthesis of porous CuO-CeO2 nanospheres with an enhanced low-temperature CO oxidation activity [J]. Nanoscale, 2010, 2(11): 2739-2743

AI Summary AI Mindmap
PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/