Liquid-phase preparation and electrochemical property of LiFePO4/C nanowires

Li Tian , Lin Chen

Journal of Central South University ›› 2014, Vol. 21 ›› Issue (2) : 477 -481.

PDF
Journal of Central South University ›› 2014, Vol. 21 ›› Issue (2) : 477 -481. DOI: 10.1007/s11771-014-1963-y
Article

Liquid-phase preparation and electrochemical property of LiFePO4/C nanowires

Author information +
History +
PDF

Abstract

Olivine LiFePO4/C nanowires have been successfully synthesized by a simple and eco-friendly solution preparation. The phase, structure, morphology and composition of the as-prepared products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric and differential-thermogravimetric analysis (TG-DTA) and energy dispersive X-ray spectrometry (EDS) techniques, showing uniform nanowire shape of LiFePO4/C with a diameter of 80–150 nm and a length of several microns. The heat-treated LiFePO4/C nanowires show excellent electrochemical properties of specific discharge capacity, rate capacity and cycling stability. In particular, the LiFePO4/C nanowires heat-treated at 400 °C show preferable first discharge specific capacity of 161 mA·h/g at 0.1C rate, while the voltage platform is 3.4 V and the first discharge specific capacity is 93 mA·h/g at 20C rate. The specific capacity retention is 98% after 50 cycles at 5C rate.

Keywords

liquid-phase preparation / LiFePO4 / nanowires / electrochemical property

Cite this article

Download citation ▾
Li Tian, Lin Chen. Liquid-phase preparation and electrochemical property of LiFePO4/C nanowires. Journal of Central South University, 2014, 21(2): 477-481 DOI:10.1007/s11771-014-1963-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ZhangW J. Structure and performance of LiFePO4 cathode materials: A review [J]. J Power Sources, 2011, 196: 2962-2970

[2]

WangY G, HeP, ZhouH S. Olivine LiFePO4: Development and future [J]. Energy Environ Sci, 2011, 4: 805-817

[3]

WangJ J, SunX L. Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries [J]. Energy Environ Sci, 2012, 5: 5163-5185

[4]

YuanL X, WangZ H, ZhangW X, HuX L, ChenJ T, HuangY H, GoodenoughJ B. Development and challenges of LiFePO4 cathode material for lithium-ion batteries [J]. Energy Environ Sci, 2011, 4: 269-284

[5]

WuY M, WenZ H, LiJ H. Hierarchical carbon-coated LiFePO4 nanoplate microspheres with high electrochemical performance for Li-ion batteries [J]. Adv Mater, 2011, 23: 1126-1129

[6]

PopovicJ, CakanR D, TornowJ, MorcretteM, SuD S, AntoniettiM, TitiriciM M. LiFePO4 mesocrystals for Lithium-ion batteries [J]. Small, 2011, 7: 1127-1135

[7]

JulienC M, MaugerA, ZaghiK. Surface effects on electrochemical properties of nano-sized LiFePO4 [J]. J Mater Chem, 2011, 21: 9955-9968

[8]

DohertyC M, CarusoR A, DrummondC J. High performance LiFePO4 electrode materials: Influence of colloidal particle morphology and porosity on lithium-ion battery power capability [J]. Energy Environ Sci, 2010, 3: 813-823

[9]

FerrariS, LavallR L, CapaoniD, QuartaroneE, MagistrisA, MustarelliP, CantonP. Influence of particle size and crystal orientation on the electrochemical behavior of carbon-coated LiFePO4 [J]. J Phys Chem C, 2010, 114(29): 12598-12603

[10]

ZhangJ W, ZhouL H, ZhangL L, WuW Y, ZhangX B, WangL M. Synthesis and electrochemical properties of LiFePO4/C composite cathode material prepared by a new route using supercritical carbon dioxide as a solvent [J]. J Mater Chem, 2011, 21: 6975-6980

[11]

ZhuC B, YuY, GuL, WerchertK, MaierJ. Electrospinning of highly electroactive carbon-coated single-crystalline LiFePO4 nanowires [J]. Angew Chem Int Ed, 2011, 50: 1-6

[12]

LepageD, MichotC, LiangG X, GauthierM, SchougaardS B. A soft chemistry approach to coating of LiFePO4 with a conducting polymer [J]. Angew Chem Int Ed, 2011, 50: 1-5

[13]

SinhaN N, MunichandraiahN. Single-shot preparation of crystalline nano-plate LiFePO4 by a simple polyol route [J]. J Electrochem Soc, 2010, 157(7): A824-A829

[14]

DevarejuM K, HonmaI. Hydrothermal and solvothermal process towards development of LiMPO4 (M = Fe, Mn) nanomaterials for lithium-ion batteries [J]. Adv Energy Mater, 2012, 2(3): 284-297

[15]

TengF, SantgangopalanS, LemmensR, GengX B, PatelP, MengD D. In situ growth of LiFePO4 nanorod arrays under hydrothermal condition [J]. Solid State Sci, 2010, 12(5): 952-955

[16]

YangH, WuX L, CaoM H, GuoY G. Solvothermal synthesis of LiFePO4 hierarchically dumbbell-like microstructures by nanoplate self-assembly and their application as a cathode material in lithium-ion batteries [J]. J Phys Chem C, 2009, 113: 3345-3351

AI Summary AI Mindmap
PDF

89

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/