PDF
Abstract
Three new ferrocene (Fc) based receptors with pyridyl moiety, named methyl-6-ferrocenoylacetyl-2-pyridine carboxylate (FcL1), 1,1′-(2,6-bispyridyl)bis-3-ferrocenyl-1,3-propanedione (FcL2), ferrocenecarboxaldehyde-2,6-dipicolinoyhydrazone (FcL3) were synthesized, and further characterized by elemental analysis, IR spectra, UV-Vis spectra, 1H and 13C NMR. The electrochemical properties and ion sensing properties of FcL1, FcL2 and FcL3 were also investigated by means of cyclic voltammetry in ethanol solution with 0.1 mol/L LiClO4 as the supporting electrolyte. The E0 values of the receptors increase with the scanning rate increasing at high scanning rate, and Ipa/Ipc approaches unity, indicating that the redox reaction is basically reversible. Their recognition performances to different metal cations such as Cd(II), Co(II), Cu(II), Hg(II), Mn(II), Ni(II), Zn(II) show that the FcL1 is responsive to Cu(II) with the maximum electrochemical shift of the FcL1 for Cu(II) of about 72.0 mV, whereas the FcL2 is responsive to Cu(II) and Mn(II) with shift of 102 mV and 109 mV, respectively, and the FcL3 is responsive to Hg(II) and Mn(II) with the shift of 53.0 mV and 54.0 mV, respectively. All the results show that these receptors may have potential applications in electrochemical sensor technology, material science, and molecular devices.
Keywords
synthesis
/
receptor
/
characterization
/
electrochemical recognition
Cite this article
Download citation ▾
Hong-ju Tian, Rui-ren Tang, Shi-feng Li, Yi-ming Luo.
Synthesis, characterization and electrochemical recognition of metal ions of three new ferrocenyl derivatives containing pyridyl moiety.
Journal of Central South University, 2013, 20(12): 3379-3384 DOI:10.1007/s11771-013-1862-7
| [1] |
MoriuchiT, HiraoT. Design of ferrocene-dipeptide bioorganometallic conjugates to induce chirality-organized structures [J]. Accounts Chem Res, 2010, 43(7): 1040-1051
|
| [2] |
OtonF, GonzalezM D C, EspinosaA, TarragaA, MolinaP. Synthesis, structural characterization, and sensing properties of clickable unsymmetrical 1,1′-disubstituted ferrocenetriazole derivatives [J]. Organometal, 2012, 31(5): 2085-2096
|
| [3] |
ThakurA, SardarS, GhoshS. A highly selective redox, chromogenic, and fluorescent chemosensor for Hg2+ in aqueous solution based on ferrocene-glycine bioconjugates [J]. Inorg Chem, 2011, 50(15): 7066-7073
|
| [4] |
WuC-h, YeH-d, BaiW-j, LiQ-n, GuoD-d, LvG, YanH, WangX-mei. New potential anticancer agent of carborane derivatives: selective cellular interaction and activity of ferrocene-substituted dithio-o-carborane conjugates [J]. Bioconjugate Chem, 2011, 22(1): 16-25
|
| [5] |
PandeyR, GuptaR K, ShahidM, MaitiB, MisraA, PandeyD S. Synthesis and characterization of electroactive ferrocene derivatives: ferrocenylimidazoquinazoline as a multichannel chemosensor selectively for Hg2+ and Pb2+ ions in an aqueous environment [J]. Inorg Chem, 2012, 51(1): 298-311
|
| [6] |
OchiY S, SuzukiM, ImaokaT, MurataM, NishiharaH, EinagaY, YamamotoK. Controlled storage of ferrocene derivatives as redox-active molecules in dendrimers [J]. J Am Chem Soc, 2010, 132(14): 5061-5069
|
| [7] |
WangF-b, FanM-y, LiuY-n, WangJ-x, ZwngD-m, HuangK-long. Fabrication of ferrocenyl glutathione modified electrode and its application for detection of cadmium ions [J]. Journal of Central South University of Technology, 2008, 15(1): 44-48
|
| [8] |
CaoQ Y, PradhanT, KimS, KimJ S. Ferrocene-appended aryl triazole for electrochemical recognition of phosphate ions [J]. Org Lett, 2011, 13(16): 4386-4389
|
| [9] |
ReynesO, MaillardF, MoutetJ, RoyalG, Saint-AmanE, StanciuG, DutastaJ, GosseI, MulatierJ. Complexation and electrochemical sensing of anions by amide-substituted ferrocenyl ligands [J]. J Organometa Chem, 2001, 637-639: 356-363
|
| [10] |
SolaA, OrenesR A, GarciaM Á, ClaramuntR M, AlkortaI, ElgueroJ, TarragaA, MolinaP. Unprecedented 1,3-diaza[3]ferrocenophane scaffold as molecular probe for anions [J]. Inorg Chem, 2011, 50(9): 4212-4220
|
| [11] |
OtónF, GonzalezM D C, EspinosaA, TarragaA, MolinaP. Synthesis, structural characterization, and sensing properties of clickable unsymmetrical 1,1′-disubstituted ferrocene-triazole derivatives [J]. Organometallics, 2012, 31(5): 2085-2096
|
| [12] |
XiangD-b, GaoG-y, ShaoH-b, LiH-l, ZhangH-L, YuH-Zhong. Redox behavior and ion-pairing thermodynamics of ferrocene and its derivatives in the organic phase [J]. J Phys Chem C, 2010, 114(1): 617-621
|
| [13] |
KealyT J, PausonP L. A new type of organo-iron compound [J]. Nature, 1951, 168(4285): 1039-1040
|
| [14] |
CreagerS, YuC J, BamdadC, O’ConnorS, MacleanT, LamE, ChongY, OlsenG T, LuoJ, GozinM, KayyemJ F. Electron transfer at electrodes through conjugated “molecular wire” bridges [J]. J Am Chem Soc, 1999, 121(5): 1059-1064
|
| [15] |
JiB, DaiZ-h, JuH-xian. Determination of kinetics parameters of 1-acyl ferrocene at a platinum microelectrode [J]. Chin J Inorg Chem, 1996, 12(3): 260-266
|
| [16] |
MorikitaT, YamamotoT. Electrochemical determination of diffusion coefficient of π-conjugated polymers containing ferrocene unit [J]. J Organomet Chem, 2001, 637–639: 809-812
|
| [17] |
BeerP D, BernhardtP V. A ferrocene functionalized macrocyclic receptor for cations and anions [J]. J Chem Soc Dalton Trans, 2001, 9: 1428-1431
|
| [18] |
MiyajiH, CollinsonS R, ProkesI, TuckerJ H R. A ditopic ferrocene receptor for anions and cations that functions as a chromogenic molecular switch [J]. Chem Commun, 2003, 1: 64-65
|
| [19] |
ReynesO, BucherC, MoutetJ C, RoyalG, Saint-amanE. Electrochemical sensing of dihydrogen phosphate and adenosine-5′-triphosphate anions by self-assembled monolayers of (ferrocenylmethyl) trialkylammonium cations on gold electrodes [J]. Inorg Chim Acta, 2008, 361(6): 1784-1788
|
| [20] |
LiuW, LiX, LiZ-y, ZhangM-l, SongM-ping. Voltammetric metal cation sensors based on ferrocenylthiosemicarbazone [J]. Inorg Chem Commun, 2007, 10(12): 1485-1488
|
| [21] |
Sousa-PedraresA, CaminaN, RomeroJ, DuranM L, Garcia-VazquezJ A, SousaA. Electrochemical synthesis and crystal structure of cobalt(II), nickel(II), copper(II), zinc(II) and cadmium(II) complexes with 2-pyridinecarbaldehyde-(2′-aminosulfonylbenzoyl) hydrazone [J]. Polyhedron, 2008, 27(16): 3391-3397
|
| [22] |
GudasiK B, ShenoyR V, VadaviR S, PatilM S, PatilS A. A novel architecture of a heptadentate macroacyclic 2,6-bis[(3-methoxysalicylidene) hydrazinocarbonyl] pyridine towards lanthanides: A synthetic and structural studies of dinuclear lanthanide(III) complexes [J]. J Inclusion Phenom Macrocyclic Chem, 2006, 55(1/2): 93-101
|
| [23] |
WilkinsonG, RosenblumM, WhitingM C, WoodwardR B. The structure of iron biscyclopentadienyl [J]. J Am Chem Soc, 1952, 74(8): 2125-2126
|
| [24] |
GaoL-b, ZhangL-y, ShiL-x, ChenZ-ning. Syntheses, characterization, redox properties, and mixed-valence chemistry of tetra- and hexanuclear diyndiyl complexes [J]. Organometallics, 2005, 24(7): 1678-1684
|
| [25] |
KongC Y, NakamuraM, SoneK J, FunazukuriT, KageiS. Measurements of binary diffusion coefficients for ferrocene and 1,1′-dimethylferrocene in supercritical carbon dioxide [J]. J Chem Eng, 2010, 55(9): 3095-3100
|
| [26] |
CarjD, ColesS J, HursthouseM B, LightM E, MunroE L, TuckerJ H R. Facile control of the redox properties of ferrocene-containing dipyridyl derivatives that bind platinum(II) [J]. J Westwood Organometallics, 2000, 19(17): 3312-3315
|