Influence of chemical composition and cold deformation on aging precipitation behavior of high nitrogen austenitic stainless steels

Hua-bing Li , Zhou-hua Jiang , Hao Feng , Hong-chun Zhu , Zu-rui Zhang

Journal of Central South University ›› 2013, Vol. 20 ›› Issue (12) : 3354 -3362.

PDF
Journal of Central South University ›› 2013, Vol. 20 ›› Issue (12) : 3354 -3362. DOI: 10.1007/s11771-013-1859-2
Article

Influence of chemical composition and cold deformation on aging precipitation behavior of high nitrogen austenitic stainless steels

Author information +
History +
PDF

Abstract

The influence of chemical composition and cold deformation on aging precipitation behavior of 18Cr-16Mn-2Mo-1.1N (HNS-A), 18Cr-16Mn-1.3N (HNS-B), 18Cr-18Mn-2Mo-0.96N (HNS-C) and 18Cr-18Mn-2Mo-0.77N (HNS-D) high nitrogen austenitic stainless steels was investigated. The results show that the “nose” temperatures and incubation periods of the initial time-temperature-precipitation (TTP) curves of aged HNSs are found to be 850 °C, 60 s; 850 °C, 45 s; 850 °C, 60 s and 900 °C, 90 s, respectively. Based on the analysis of SAD patterns, the coarse cellular Cr2N precipitate which presents a lamellar structure has a hexagonal structure of a=0.478 nm and c=0.444 nm. The χ phase corresponding to a composition of Fe36Cr12Mo10, is determined to be a body-centered cubic structure of a=0.892 nm. The precipitating sensitivity presents no more difference with the nitrogen content increasing from 0.77% to 0.96%, but exhibits so obviously that the cellular precipitates nearly overspread the whole field. The addition of Mo element can restrain the TTP curves moving left and down, which means decreasing the sensitivity of aging precipitation. With increasing the cold deformation, the sensitivity of precipitation increases obviously.

Keywords

high nitrogen austenitic stainless steel / aging precipitation / time-temperature-precipitation curve / chemical composition / cold deformation

Cite this article

Download citation ▾
Hua-bing Li, Zhou-hua Jiang, Hao Feng, Hong-chun Zhu, Zu-rui Zhang. Influence of chemical composition and cold deformation on aging precipitation behavior of high nitrogen austenitic stainless steels. Journal of Central South University, 2013, 20(12): 3354-3362 DOI:10.1007/s11771-013-1859-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

UggowitzeP J, MagdowskiR, SpeidelM O. Nickel free high nitrogen austenitic steels [J]. ISIJ International, 1996, 36(7): 901-908

[2]

ZhaoR, ZhangZ, ShiJ B, TaoL, SongS Z. Characterization of stress corrosion crack growth of 304 stainless steel by electrochemical noise and scanning Kelvin probe [J]. Journal of Central South University of Technology, 2010, 17(1): 13-18

[3]

KimY S, NamS M, KimS J. Deformation behavior of nitrogen bearing austenitic steels with various nitrogen contents [J]. Key Engineering Materials, 2007, 345–346: 117-120

[4]

ShankarP, ShaikhH, SivakumarS, VenugopalaS, SundararamanaD, KhatakaH S. Effect of thermal aging on the room temperature tensile properties of AISI type 316LN stainless steel [J]. Journal of Nuclear Materials, 1999, 264(1): 29-34

[5]

MudaliU K, DayalR K, GnanamoorthyJ B, GillT P S. Influence of nitrogen addition on microstructure and pitting corrosion resistance of austenitic weld metals [J]. Werkstoffe und Korrosion, 1986, 37(12): 637-643

[6]

OgawaM, HiraokaK, KatadaY, SagaraM, TsukamotoS. Chromium nitride precipitation behavior in weld heat-affected zone of high nitrogen stainless steel [J]. ISIJ International, 2002, 42(12): 1391-1398

[7]

ChandraT, TsuzakiK, MilitzerM, Ravindran. Decomposition of austenite in Fe-25Cr-1N alloy produced by solution nitriding [J]. Materials Science Forum, 2007, 539–543: 4950-4955

[8]

LeeT H, KimS J, JungY C. Crystallographic details of precipitates in Fe-22Cr-21Ni-6Mo-(N) superaustenitic stainless steels aged at 900 °C [J]. Metallurgical and Materials Transactions A, 2000, 31(7): 1713-1723

[9]

KnutsenR D, LangC L, BassonJ A. Discontinuous cellular precipitation in a Cr-Mn-N steel with niobium and vanadium additions [J]. Acta Materialia, 2004, 52(8): 2407-2417

[10]

JiangZ H, ZhangZ R, LiH B, LiZ, MaQ F. Microstructural evolution and mechanical properties of aging high nitrogen austenitic stainless steels [J]. International Journal of Minerals, Metallurgy and Materials, 2010, 17(6): 729-736

[11]

ZhangZ R, LiH B, JiangZ H, LiZ, XuB Y. Influences of aging precipitation on corrosion resistance of 18Cr-18Mn-2Mo-0.77N HNS [J]. Advanced Materials Research, 2009, 79–82: 1013-1016

[12]

ZhangZ R, JiangZ H, LiH B, XuB Y. Effect of aging on mechanical properties of high nitrogen austenitic stainless steel [C]. Proceedings of 10-th International Conference on High Nitrogen Steels, 2009MoscowRusmet Press112-117

[13]

LeeT H, KimS J, TakakiS. Time-temperature-precipitation characteristics of high-nitrogen austenitic Fe-18Cr-18Mn-2Mo-0.9N steel [J]. Metallurgical and Materials Transactions A, 2006, 37(12): 3445-3454

[14]

HaH Y, KwonH S. Effects of Cr2N on the pitting corrosion of high nitrogen stainless steels [J]. Electrochimica Acta, 2007, 52(5): 2175-2180

[15]

SteinG, HuchlenbroichI. Manufacturing and application of high nitrogen steels [J]. Materials and Manufacturing Processes, 2004, 19(1): 7-17

[16]

KatadaY, SagaraM, KobayashiY, KodamaT. Fabrication of high strength high nitrogen stainless steel with excellent corrosion resistance and its mechanical properties [J]. Materials and Manufacturing Processes, 2004, 19(1): 19-30

[17]

SagaraM, KatadaY, KodamaT. Localized corrosion behavior of high nitrogen-bearing austenitic stainless steels in seawater environment [J]. ISIJ International, 2003, 43(5): 714-719

[18]

LiH B, JiangZ H, CaoY, ZhangZ R. Fabrication of high nitrogen austenitic stainless steels with excellent mechanical and pitting corrosion properties [J]. International Journal of Minerals, Metallurgy and Materials, 2009, 16(4): 387-392

[19]

LiH B, JiangZ H, MaQ F, LiW M. Manufacturing high nitrogen austenitic stainless steels by pressurized induction furnace [J]. Applied Mechanics and Materials, 2011, 52–54: 1687-1691

[20]

WillenbruchR D, ClaytonC R, OversluizenM, KimD, LuY. An XPS and electrochemical study of the influence of molybdenum and nitrogen on the passivity of austenitic stainless steel [J]. Corrosion Science, 1990, 31(15): 179-190

[21]

HaladaG P, ClaytonC R. Comparison of Mo-N and W-N synergism during passivation of stainless steel through X-ray photoelectron spectroscopy and electrochemical analysis [J]. Journal of Vacuum Science Technology A, 1993, 11(4): 2342-2347

[22]

LiH B, JiangZ H, YangY, ZhangZ R. Pitting corrosion and crevice corrosion behavior of high nitrogen austenitic stainless steels [J]. International Journal of Minerals, Metallurgy and Materials, 2009, 16(5): 517-524

[23]

SongD-l, GuJ-f, HuM-juan. Measurement and analysis of TTT diagrams of pre-hardened plastic die steels P20 and 718 [J]. Heat Treatment of Metals, 2003, 28(12): 27-29

[24]

ChenZ-qiang. Recent development in high nitrogen stainless steel research [J]. Baosteel Technology, 2005, 5: 10-17

[25]

LiH B, JiangZ H, ShenM H, YouX M. Manufacturing high nitrogen austenitic stainless steels by nitrogen gas alloying and adding nitrided ferroalloys [J]. Journal of Iron and Steel Research International, 2007, 14(3): 63-68

[26]

Santhi SrinivasN C, KutumbaraoV V. On the discontinuous precipitation of Cr2N in Cr-Mn-N austenitic stainless steels [J]. Scripta Materialia, 1997, 37(3): 285-291

[27]

KasperJ S. The ordering of atoms in the chi-phase of the iron-chromium-molybdenum system [J]. Acta Metallurgica, 1954, 3(2): 456-461

[28]

LeeD H, LeeD B, JungW S. High temperature oxidation of Fe-Cr-Mo alloys [J]. Journal of Ceramic Processing Research, 2006, 7(2): 140-143

AI Summary AI Mindmap
PDF

74

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/