Oxidation behaviors of Ni-Cr-Al superalloy foams at 1 000 °C in air

Hui-ping Tang , Yan Wang , Yong Liu , Wei-jie Li , Chao Han

Journal of Central South University ›› 2013, Vol. 20 ›› Issue (12) : 3345 -3353.

PDF
Journal of Central South University ›› 2013, Vol. 20 ›› Issue (12) : 3345 -3353. DOI: 10.1007/s11771-013-1858-3
Article

Oxidation behaviors of Ni-Cr-Al superalloy foams at 1 000 °C in air

Author information +
History +
PDF

Abstract

The oxidation behaviors of Ni-16Cr-xAl (x=4.5%, 9.0%, mass fraction) superalloy foams in air at 1 000 °C were investigated. The effects of Al content on the resistance to high temperature oxidation were examined. The oxidation mechanisms of the foams were discussed. The results show that the resistance to the oxidation of the Ni-16Cr-xAl based alloy at 1 000 °C increases with the content of Al increasing from 4.5% to 9.0%. Complex oxide products are formed on the surface of the superalloy foams after the oxidation. Cr2O3 and Al2O3 are the predominant oxides for the scales of the foams with 4.5% Al and 9% Al, respectively. Excellent high temperature oxidation resistance and superior pore conformation stability for the Ni-16Cr-xAl based superalloy foam with 9% Al can be mainly attributed to the formation of relatively continuous and protective Al2O3 oxides on the surface of the foam.

Keywords

Ni-Cr-Al based superalloy foam / high temperature oxidation / oxide scale / pore conformation stability

Cite this article

Download citation ▾
Hui-ping Tang, Yan Wang, Yong Liu, Wei-jie Li, Chao Han. Oxidation behaviors of Ni-Cr-Al superalloy foams at 1 000 °C in air. Journal of Central South University, 2013, 20(12): 3345-3353 DOI:10.1007/s11771-013-1858-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

PeukertW. High temperature filtration in the process industry [J]. Filtration & Separation, 1998, 35: 461-464

[2]

TerpstraR L, AndersonI E, GleesonB. Development of metallic hot gas filters [C]. 2001 International Conference on Powder Metallurgy and Particulate Materials, 2001New Orleans, USAMetal Powder Industries Federation84-97

[3]

NiuY, ZhangX J, WuY, GesmundoF. The third-element effect in the oxidation of Ni-xCr-7Al (x=0, 5, 10, 15at.%) alloys in 1 atm O2 at 900–1 000 °C [J]. Corros Sci, 2006, 48: 4020-4036

[4]

Morales-RodrguezA, Bravo-LeonA, RichterG. Influence of oxidation on the high-temperature mechanical properties of zirconia/nickel cermets [J]. Scripta Mater, 2006, 54: 2087-2090

[5]

XiangJ-h, NiuY, WuW-tao. High temperature scaling of Ni-15Cu-5Al alloy in 1×105 Pa pure oxygen [J]. J Cent South Univ Technol, 2004, 11: 348-352

[6]

WangS, WuY, GesmundoF, NiuY. Oxidation of a ternary Ni-10Cr-4Al alloy in 1atm O2 at 900–1 000 °C [J]. Oxid Met, 2008, 69: 299-315

[7]

JangC-h, KimD J, KimD H, SahI J, RyuW-S, YooY-S. Oxidation behaviors of wrought nickel-based superalloys in various high temperature environments [J]. Trans Nonferrous Met Soc China, 2011, 21: 1524-1531

[8]

YoungD J, ChyrkinA, HeJ, GrünerD, QuadakkersW J. Slow transition from protective to breakaway oxidation of Haynes 214 foil at high temperature [J]. Oxid Met, 2013, 79: 405-427

[9]

GigginsC S, PettitF S. Oxidation of NiCrAl alloys between 1000 and 1200 °C [J]. J Electrochem Soc, 1971, 118: 1782-1790

[10]

WallworkG R, HedA Z. Some limiting factors in the use of alloys at high temperatures [J]. Oxid Met, 1971, 3: 171-184

[11]

AnwarU H. A TEM study of the oxide scale development in Ni-Cr-Al alloys [J]. Corros Sci, 2004, 46: 27-36

[12]

BautistaA, ArahuetesE, VelascoF, MoralC, CalabrésR. Oxidation behavior of highly porous metallic components [J]. Oxid Met, 2008, 70: 267-286

[13]

ChoiS-H, KimS-Y, YunJ-Y, KongY-M, KimB-K, LeeK-A. Effect of pore size on the high temperature oxidation of Ni-Fe-Cr-Al porous metal [J]. Met Mater Int, 2011, 17: 301-307

[14]

MukherjeeS K, UpadhyayaG S. Oxidation behavior of sintered 434L ferritic stainless steel-Al2O3 composites with ternary additions [J]. Oxid Met, 1985, 23: 177-189

[15]

BautistaA, MoralC, VelascoF, SimalC, GuzmánS. Density-improved powder metallurgical ferritic stainless steels for high-temperature applications [J]. J Mater Process Tech, 2007, 189: 344-351

[16]

BautistaA, VelascoF, CamposM, RabanalM E, TorralbaJ M. Oxidation behavior at 900 °C of austenitic, ferritic, and duplex stainless steels manufactured by powder metallurgy [J]. Oxid Met, 2003, 59: 373-393

[17]

BautistaA, VelascoF, AbenojarJ. Oxidation resistance of sintered stainless steels: Effect of yttria additions [J]. Corros Sci, 2003, 45: 1343-1354

[18]

ZhengZ, JiangY, DongH-x, TangL-m, HeY-h, HuangB-yun. Environmental corrosion resistance of porous TiAl intermetallic compounds [J]. Trans Nonferrous Met Soc China, 2009, 19: 581-585

[19]

WuC H, GaoW, HylandM, GongH. Characterisation of high temperature corrosion products on FeAl intermetallics by XPS [J]. Corros Sci, 2001, 43: 1891-1903

[20]

WagnerC D, RiggsW M, DavisL E, MoulderJ FHandbook of X-ray photoelectron spectroscopy [M], 1979Eden PrairiePerkin-Elmer Corporation42-74

[21]

MoulderJ F, ChastainJHandbook of X-Ray photoelectron spectroscopy [M], 1992Eden PrairieMN76-82

[22]

YangJ C, SchumannE, LevinI, RuhleM. Transient oxidation of NiAl [J]. Acta Mater, 1998, 46: 2195-2201

[23]

WagnerC. Passivity and inhibition during the oxidation of metals at elevated temperatures [J]. Corros Sci, 1965, 5: 751-764

[24]

WoodG C. High-temperature oxidation of alloys [J]. Oxid Met, 1970, 2: 11-57

[25]

LiuZ-y, GaoW, DahmK L, WangF-hui. Oxidation behaviour of sputter-deposited Ni-Cr-Al micro-crystalline coatings [J]. Acta Mater, 1998, 46: 1691-1700

[26]

BautistaA, González-CentenoA, BlancoG, GuzmánS. Application of EIS to the study of corrosion behaviour of sintered ferritic stainless steels before and after high-temperature exposure [J]. Mater Charact, 2008, 59: 32-39

AI Summary AI Mindmap
PDF

175

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/