Local information enhanced LBP

Gang Zhang , Guang-da Su , Jian-sheng Chen , Jing Wang

Journal of Central South University ›› 2013, Vol. 20 ›› Issue (11) : 3150 -3155.

PDF
Journal of Central South University ›› 2013, Vol. 20 ›› Issue (11) : 3150 -3155. DOI: 10.1007/s11771-013-1838-7
Article

Local information enhanced LBP

Author information +
History +
PDF

Abstract

Based on the observation that there exists multiple information in a pixel neighbor, such as distance sum and gray difference sum, local information enhanced LBP (local binary pattern) approach, i.e. LE-LBP, is presented. Geometric information of the pixel neighborhood is used to compute minimum distance sum. Gray variation information is used to compute gray difference sum. Then, both the minimum distance sum and the gray difference sum are used to build a feature space. Feature spectrum of the image is computed on the feature space. Histogram computed from the feature spectrum is used to characterize the image. Compared with LBP, rotation invariant LBP, uniform LBP and LBP with local contrast, it is found that the feature spectrum image from LE-LBP contains more details, however, the feature vector is more discriminative. The retrieval precision of the system using LE-LBP is 91.8% when recall is 10% for bus images.

Keywords

texture feature extraction / LE-LBP / minimum distance sum / gray difference sum

Cite this article

Download citation ▾
Gang Zhang, Guang-da Su, Jian-sheng Chen, Jing Wang. Local information enhanced LBP. Journal of Central South University, 2013, 20(11): 3150-3155 DOI:10.1007/s11771-013-1838-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HuangD, ShanC-f, ArdabilianM, WangY-h, ChenL-ming. Local binary patterns and its application to facial image analysis: A survey [J]. IEEE Transactions on Systems, Man, and Cybernetics-PART C: Applications and Reviews, 2011, 41(6): 765-781

[2]

ZhangG, MaZ-m, DengL-g, XuC-ming. Novel histogram descriptor for global feature extraction and description [J]. Journal of Central South University of Technology, 2010, 17(3): 580-586

[3]

AhonenT, HadidA, PietikäinenM. Face description with local binary patterns: Application to face recognition [J]. IEEE Transactions of Pattern Analysis and Machine Intelligence, 2006, 28(12): 2037-2041

[4]

ZhaoG-y, PietikäinenM. Dynamic texture recognition using local binary patterns with an application to facial expressions [J]. IEEE Transactions of Pattern Analysis and Machine Intelligence, 2007, 29(6): 915-928

[5]

HeikkiläM, PietikäinenM. A texture-based method for modeling the background and detecting moving objects [J]. IEEE Transactions of Pattern Analysis and Machine Intelligence, 2006, 28(4): 657-662

[6]

OjalaT, PietikäinenM, MäenpääT. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987

[7]

MäenpääTThe local binary pattern approach to texture analysis-extensions and applications [D], 2003OuluUniversity of Oulu

[8]

PietikäinenM, OjalaT, XuZ-lin. Rotation-invariant texture classification using feature distributions [J]. Pattern Recognition, 2000, 33(1): 43-52

[9]

MäenpääT, OjalaT, PietikäinenM, Sorianom, et al. SanfeliuA, VillanuevaJJ, VanrellM, et al. . Robust texture classification by subsets of local binary patterns [C]. Proceedings of 15th International Conference on Pattern Recognition, 2000Los AlamitosIEEE Computer Society Press3947-3950

[10]

LiaoS, LawM, ChungAcs. Dominant local binary patterns for texture classification [J]. IEEE Transactions on Image Processing, 2009, 18(5): 1107-1118

[11]

ZhangB-c, GaoY-s, ZhaoS-q, LiuJ-zhuang. Local derivative pattern versus local binary pattern: Face recognition with high-order local pattern descriptor [J]. IEEE Transactions on Image Processing, 2010, 19(2): 533-544

[12]

HafianeA, SeetharamanG, PalaniappanK, ZavidoviqueBCampilhoA, KamelM. Rotationally invariant hashing of median binary patterns for texture classification [C]. Proceedings of Image Analysis And Recognition, 2008BerlinSpringer-Verlag619-629

[13]

TanX-y, TriggsB. Enhanced local texture feature sets for face recognition under difficult lighting conditions [J]. IEEE Transactions on Image Processing, 2010, 19(6): 1635-1650

[14]

IakovidisD K, KeramidasE G, MaroulisDCampilhoA, KamelM. Fuzzy local binary patterns for ultrasound texture characterization [C]. Proceedings of Image Analysis And Recognition, 2008BerlinSpringer-Verlag750-759

[15]

GuoZ-h, ZhangL, ZhangD. Rotation invariant texture classification using LBP variance (LBPV) with global matching [J]. Pattern Recognition, 2010, 43(3): 706-719

[16]

OjalaT, ValkealahtiK, OjaE, PietikainenM. Texture discrimination with multidimensional distributions of signed gray level differences [J]. Pattern Recognition, 2001, 34(3): 727-739

[17]

GuoZ-h, ZhangL, ZhangD. A completed modeling of local binary pattern operator for texture classification [J]. IEEE Transactions on Image Processing, 2010, 19(6): 1657-1663

[18]

ShiZ-p, HuH, LiQ-y, ShiZ-z, DuanC-lun. Texture spectrum descriptor based image retrieval [J]. Journal of Software, 2005, 16(6): 1039-1045

[19]

HuijsmansD, SebeN. How to complete performance graphs in content-based image retrieval: add generality and normalize scope [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(2): 245-251

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/