Effect of Fe2O3/SiO2 ratio on maghemite-silica particulate nanocomposites

Bee Chin Ang , Iskandar Idris Yaacob , Irwan Nurdin

Journal of Central South University ›› 2013, Vol. 20 ›› Issue (11) : 2954 -2959.

PDF
Journal of Central South University ›› 2013, Vol. 20 ›› Issue (11) : 2954 -2959. DOI: 10.1007/s11771-013-1818-y
Article

Effect of Fe2O3/SiO2 ratio on maghemite-silica particulate nanocomposites

Author information +
History +
PDF

Abstract

Maghemite-silica particulate nanocomposites were prepared by modified 2-step sol-gel process. Superparamagnetic maghemite nanoparticles were successfully produced using Massart’s procedure. Nanocomposites consisting of synthesized maghemite nanoparticles and silica were produced by dispersing the as-synthesized maghemite nanoparticles into the silica particulate form. The system was then heated at 140 °C for 3 d. A variety of mass ratios of Fe2O3/SiO2 was investigated. Moreover, no surfactant or other unnecessary precursor was involved. The nanocomposites were characterized using XRD, BET and AGM. The XRD diffraction patterns show the reflection corresponding to maghemite nanoparticles and a visible wide band at 2θ from 20° to 35° which are the characteristics of the amorphous phase of the silica gel. The patterns also exhibit the presence of only maghemite and SiO2 amorphous phase, which indicates that there is no chemical reaction between the silica particulate gel and maghemite nanoparticles to form other compounds. The calculated crystallite size for encapsulated maghemite nanoparticles is smaller than the as-synthesized maghemite nanoparticles indicating the dissolution of the nanoparticles. Very high surface area is attained for the produced nanocomposites (360–390 m2/g). This enhances the sensitivity and the reactivity of the nanocomposites. The shapes of the magnetization curves for nanocomposites are very similar to the as-synthesized maghemite nanoparticles. Superparamagnetic behaviour is exhibited by all samples, indicating that the size of the maghemite nanoparticles is always within the nanometre range. The increase in iron content gives rise to a small particle growth.

Keywords

maghemite nanoparticles / nanocomposites / sol-gel / silica

Cite this article

Download citation ▾
Bee Chin Ang, Iskandar Idris Yaacob, Irwan Nurdin. Effect of Fe2O3/SiO2 ratio on maghemite-silica particulate nanocomposites. Journal of Central South University, 2013, 20(11): 2954-2959 DOI:10.1007/s11771-013-1818-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MoralesM P, PecharromanC, GonzalezT, SemaC J. Structural characteristics of uniform Γ-Fe2O3 particles with different axial (length/width) ratios [J]. J Solid State Chem, 1994, 108: 158-163

[2]

AslamM, FuL, LiS, VinayakP D. Silica encapsulation and magnetic properties of FePt nanoparticles [J]. J of Coll & Inter Sci, 2005, 290: 444-449

[3]

KrollE, WinnikF M, ZioloR. In situ preparation of nanocrystalline γ-Fe2O3 in iron (II) cross-linked alginate gels [J]. Chem Mater, 1996, 8: 1594-1596

[4]

VollathD, SzaboD V, TaylorR D, WillisJ O, SickafusK E. Synthesis and properties of nanocrystalline superparamagnetic γ-Fe2O3 [J]. Nanostruct Mater, 1995, 6: 941-944

[5]

MartinJ I, NoguesJ, LiuK, VicentJ I, SchullerI K. Ordered magnetic nanostructures: Fabrication and properties [J]. J Magn Magn Mater, 2003, 256: 449-501

[6]

BateG. Magnetic recording materials since 1975 [J]. J Magn Magn Mater, 1999, 100: 413-424

[7]

IdaT, TsuikiH, UenoA. Characterization of iron oxide in Fe2O3/SiO2 catalyst [J]. J Catal, 1987, 106: 428-439

[8]

GuptaA J, GuptaM. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications [J]. J Biomaterials, 2005, 26: 3995-4021

[9]

EnnasG, MarongiuG, MusinuA, FalquiA, BalliranoP, CaminitiR. Characterization of Nanocrystalline γ-Fe2O3 Prepared by Wet Chemical Method [J]. Mater Res, 1998, 14(4): 1570

[10]

McmichaelR D, ShullR D, SwartzendruberL J, BennettL H, WatsonR E. Magnetocaloric effect in superparamagnets [J]. J Magn Magn Mater, 1992, 111(1/2): 29-33

[11]

BhatnagarS P, RosensweigR E. Introduction to the magnetic fluids bibliography [J]. J Magn Magn Mater, 1995, 149: 198

[12]

SatterfieldC NHeterogeneous catalyst in industrial practice [M], 1991SingaporeMcGraw Hill, Inc.85-110

[13]

BeeA, MassartR, NeveuS. Synthesis of very fine maghemite particles [J]. J of Magn Mat, 1995, 149: 6-9

[14]

Gomez-villacierosR, HernanL, MoralesJ. Mechanochemical preparation and thermal stability of gamma-Fe2O3 derived from gamma FeOOH [J]. Mat Res Bulletin, 1987, 22: 513-520

[15]

CannasC, ConcasG, GatteschiD, FalquiA, MusinuA, PiccalugaG, SangregorioC, SpanoG. Superparamagnetic behaviour of γ-Fe2O3 nanoparticles dispersed in a silica matrix [J]. Phys Chem Phys, 2001, 3: 832-838

[16]

HohJ C, YaacobI I, TehC L. Cobalt ferrite magnetic nanoparticle by polymer matrix template synthesis for high magnetic field bioseparation [J]. Key Engineering Materials, 2004, 206: 1201-1205

[17]

JingZ H, WuS H. Synthesis, characterization and magnetic properties of γ-Fe2O3 nanoparticles via a non-aqueous medium [J]. Journal of Solid State Chem, 2004, 177: 1213-1218

[18]

YangH H, ZhangS Q, ChenX L, ZhuangZ X, XuJ G, WangX R. Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparation [J]. Anal Chem, 2004, 76: 1316-1321

[19]

AngB C, YaacobI I. Synthesis and characterization of iron oxides nanoparticles [J]. Key Engineering Materials, 2006, 306/308: 1115-1120

[20]

MonteF D, MoralesM P, LevyD, FernandezA, OcanaM, RoigA, MolinsE, OgradyK, SernaC J. Formation of γ-Fe2O3 isolated nanoparticles in a silica matrix [J]. Langmuir, 1997, 13: 3627-3634

[21]

BorelliN F, MorseD L, SchreursJ W H. Magnetic properties of iron oxide photolytically produced from Fe(CO)5 impregnated porous glass [J]. J Appl Phys, 1983, 54: 3344-3350

[22]

ZioloR F, GiannelisE P, WeinteinB A, OhoroM P, GangulyB N, MehrotraV, RussellM W, HuffmanD R. Matrix-mediated synthesis of nanocrystalline γ-Fe2O3: a new optically transparent magnetic material [J]. Advanced Materials, 1992, 257: 219-222

[23]

NguyenM T, DiazA F. A novel method for the preparation of magnetic nanoparticles in a polypyrrole powder [J]. Adv Mater, 1994, 6: 858-860

[24]

VekasL, DoinaB, OanaM. Magnetic nanofluids stabilized with various chain length surfactants [J]. Romanian Reports in Physics, 2006, 58(3): 257-267

[25]

SantraS, TapecR, TheodoropoulouN, DobsonJ, HebardA, TanW H. Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of non-ionic surfactants [J]. Langmuir, 2001, 17: 2900-2906

[26]

MariaF C, CorriasA, PashinaG. Iron-oxide-silica aerogel and xerogel nanocomposite materials [J]. J Non-Cryst Solids, 2001, 293–295: 25-31

[27]

PachecoR F, ArrueboM, MarquinaC, IbaraR, ArbiolJ, SantamariaJ. Highly magnetic silica-coated iron nanoparticles prepared by the arc-discharge method [J]. Nanotechnology, 2006, 17: 1188-1192

[28]

BarradoE, RodriguezJ A, PrietoF, MedinaJ. Characterization of iron oxides embedded in silica gel obtained by two different methods [J]. J Non Crys Solids, 2005, 351: 906-914

[29]

JanzenC, KnippingJ, RellinghausB, RothP. Formation of silica-embedded iron oxide nanoparticles in low-pressure flames [J]. Journal of Nanoparticles Res, 2003, 5: 589-596

[30]

MornetS, GrassetE, PortierJ, DuguetE. Maghemite@silica nanoparticles for biological applications [J]. European Cells and Materials, 2002, 3(2): 110-113

[31]

SartorattoP P C, CaiadoK L, PedrozaR C, SilvaS W, MoraisP C. The thermal stability of maghemite-silica nanocomposites: An investigation using X-ray diffraction and Raman spectroscopy [J]. Journal of Alloys and Compounds, 2007, 434–435: 650-654

[32]

ZhangL, GeorgiaC, PapaefthymiouZ R F, YingJ Y. Novel γ-Fe2O3/SiO2 magnetic nanocomposites via sol-gel matrix mediated synthesis [J]. Nanostruct Mater, 1997, 9: 185-188

[33]

GreggS J, SingK S WAdsorption, Surface Area and Porosity, 19822nd edUnited StateAcademic Press Inc42

[34]

BrunauerS, EmmettP H, TellerE. Adsorption of gases in multimolecular layers [J]. Journal of the American Chemical Society, 1938, 60: 309-19

[35]

KamalM S K, MakhloufS A. High surface area thermally stabilized porous iron oxide/silica nanocomposites via a formamide modified sol-gel process [J]. Appl Surface Sci, 2008, 254: 3767-3773

[36]

VestalC R, ZhangZ J. Synthesis and magnetic characterization of Mn and Co spinel ferrite-silica nanoparticles with tunable magnetic core [J]. Nanoletters, 2003, 3(12): 1739-1743

AI Summary AI Mindmap
PDF

76

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/