Nonlinear analysis of pounding between decks of multi-span bridge subjected to multi-support and multi-dimensional earthquake excitation

Hai Zhang , Li Jiao , Jun-nan Lin

Journal of Central South University ›› 2013, Vol. 20 ›› Issue (9) : 2546 -2554.

PDF
Journal of Central South University ›› 2013, Vol. 20 ›› Issue (9) : 2546 -2554. DOI: 10.1007/s11771-013-1767-5
Article

Nonlinear analysis of pounding between decks of multi-span bridge subjected to multi-support and multi-dimensional earthquake excitation

Author information +
History +
PDF

Abstract

The nonlinear analysis of pounding between bridge deck segments subjected to multi-support excitations and multi-dimensional earthquake motion was performed. A novel bottom rigid element (BRE) method of the current displacement input model for structural seismic analysis under the multi-support excitations was used to calculate structural dynamic response. In the analysis, pounding between adjacent deck segments was considered. The seismic response of a multi-span bridge subjected to the multi-support excitation, considering not only the traveling-wave effect and partial coherence effect, but also the seismic non-stationary characteristics of multi-support earthquake motion, was simulated using finite element method (FEM). Meanwhile, the seismic response of the bridge under uniform earthquake was also analyzed. Finally, comparative analysis was conducted and some calculation results were shown for pounding effect, under multi-dimensional and multi-support earthquake motion, when performing seismic response analysis of multi-span bridge. Compared with the case of uniform/multi-support/multi-support and multi-dimensional earthquake input, the maximum values of pounding force in the case of multi-support and multi-dimensional earthquake input increase by about 5–8 times; the absolute value of bottom moment and shear force of piers increase by about 50%–600% and 23.1%–900%, respectively. A conclusion can be given that it is very necessary to consider the pounding effect under multi-dimensional and multi-support earthquake motion while performing seismic response analysis of multi-span bridge.

Keywords

pounding / bridge / bottom rigid method (BRE) / multi-dimensional and multi-support earthquake motion

Cite this article

Download citation ▾
Hai Zhang, Li Jiao, Jun-nan Lin. Nonlinear analysis of pounding between decks of multi-span bridge subjected to multi-support and multi-dimensional earthquake excitation. Journal of Central South University, 2013, 20(9): 2546-2554 DOI:10.1007/s11771-013-1767-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

YeJ-h, SunJ-mei. Response spectrum method for multi-support seismic excitation [J]. Chinese Journal of Applied Mechanics, 2007, 24(1): 47-53

[2]

ShehataE A R. Pounding mitigation and unseating prevention at expansion joints of isolated multi-span bridges [J]. Engineering Structures, 2009, 31(10): 2345-2356

[3]

ShehataE A R, ToshiroH, UweD. Ground motion spatial variability effects on seismic response control of cable-stayed bridges [J]. Earthquake Engineering and Engineering Vibration, 2011, 10(1): 37-49

[4]

KaimingB, HongH, NawawiC. Influence of ground motion spatial variation, site condition and SSI on the required separation distances of bridge structures to avoid seismic pounding [J]. Earthquake Engineering and Structural Dynamics, 2011, 40(9): 1027-1043

[5]

DengY-l, HeX-jun. Effect of pounding at expansion joints on seismic response of long-span suspension bridge under strong earthquakes [J]. Advanced Materials Research, 2011, 163–167: 4373-4377

[6]

ShehataE, ToshiroH, UweE D. Earthquake ground motion spatial variation effects on seismic response control of cable-stayed bridges [J]. Journal of Structural Engineering, 2009, 55A: 709-718

[7]

AnatR, KazuhikoK. Relative displacement response spectra with pounding effect [J]. Earthquake Engineering and Structural Dynamics, 2001, 31(10): 1511-1538

[8]

ShehataE A R, ToshiroHKyriazisD P. Seismic protection of cable-stayed bridges under multiple-support excitations [C]. 4th International Conference on Earthquake Geotechnical Engineering, 2007Thessaloniki, GreeceSpringer1361

[9]

ShehataE A R, UweE D, ToshiroH. Friction based semi-active control of cable-stayed bridges [J]. Journal of Structural Engineering, 2007, 53A: 428-438

[10]

LiuG-h, LiH-n, GuoWei. An effective and practical method for solving an unnegligible problem inherent in the current calculation model for multi-support seismic analysis of structures [J]. Science China, 2010, 53(7): 1774-1784

[11]

ShehataE A R, ToshiroH, UweE D. Spatial variation effects on seismic response control of cable-stayed bridges [C]. 14th World Conference on Earthquake Engineering, 2008Beijingthe Seismological Press of China05-02-0015

[12]

WilsonE LStatic and dynamic analysis of structures: A physical approach with emphasis on earthquake engineering [M], 2004Berkley, CaliforniaComputer and Structures, Inc

[13]

JankowskiR, WildeK, FujinoY. Pounding of superstructure segments in isolated elevated bridge during earthquake [J]. Earthquake Engineering and Structural Dynamics, 1998, 27(5): 487-502

[14]

JankowskiR, WildeK, FujinoY. Reduction of pounding effects in elevated bridges during earthquakes [J]. Earthquake Engineering and Structural Dynamics, 2000, 29(2): 195-212

[15]

HaoH, DuanX N. Seismic response of asymmetric structures to multiple ground motions [J]. Journal of Structural Engineering, 1995, 121(11): 1557-1564

[16]

ShenS-z, XuC-b, ZhaoChenDesign of suspension structure [M], 1997BeijingChina Architecture and Building Press

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/