Competitive adsorption of Cu(II) and Pb(II) ions from aqueous solutions by Ca-alginate immobilized activated carbon and Saccharomyces cerevisiae

Ming Lu , Yun-guo Liu , Xin-jiang Hu , Yue Ben , Xiao-xia Zeng , Ting-ting Li , Hui Wang

Journal of Central South University ›› 2013, Vol. 20 ›› Issue (9) : 2478 -2488.

PDF
Journal of Central South University ›› 2013, Vol. 20 ›› Issue (9) : 2478 -2488. DOI: 10.1007/s11771-013-1760-z
Article

Competitive adsorption of Cu(II) and Pb(II) ions from aqueous solutions by Ca-alginate immobilized activated carbon and Saccharomyces cerevisiae

Author information +
History +
PDF

Abstract

To establish a theoretical foundation for simultaneous removal of multi-heavy metals, the adsorption of Cu(II) and Pb(II) ions from their single and binary systems by Ca-alginate immobilized activated carbon and Saccharomyces cerevisiae (CAS) was investigated. The CAS beads were characterized by Scanning electron microscope (SEM) and Fourier transformed infrared spectroscopy (FTTR). The effect of initial pH, adsorbent dosage, contact time and initial metal ions concentration on the adsorption process was systematically investigated. The experimental maximum contents of Cu(II) and Pb(II) uptake capacity were determined as 64.90 and 166.31 mg/g, respectively. The pseudo-second-order rate equation and Langmuir isotherm model could explain respectively the kinetic and isotherm experimental data of Cu(II) and Pb(II) ions in single-component systems with much satisfaction. The experimental adsorption data of Cu(II) and Pb(II) ions in binary system were best described by the extended Freundlich isotherm and the extended Langmuir isotherm, respectively. The removal of Cu(II) ions was more significantly influenced by the presence of the coexistent Pb(II) species, while the Pb(II) removal was affected slightly by varying the initial concentration of Cu(II). The CAS was successfully regenerated using 1 mol/L HNO3 solution.

Keywords

competitive adsorption / Cu(II) / Pb(II) / Saccharomyces cerevisiae / kinetics / equilibrium isotherms

Cite this article

Download citation ▾
Ming Lu, Yun-guo Liu, Xin-jiang Hu, Yue Ben, Xiao-xia Zeng, Ting-ting Li, Hui Wang. Competitive adsorption of Cu(II) and Pb(II) ions from aqueous solutions by Ca-alginate immobilized activated carbon and Saccharomyces cerevisiae. Journal of Central South University, 2013, 20(9): 2478-2488 DOI:10.1007/s11771-013-1760-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

PapageorgiouS K, KatsarosF K, KouvelosE P, NolanJ W, DeitH L, KanellopoulosN K. Heavy metal sorption by calcium alginate beads from Laminaria digitata [J]. J Hazard Mater, 2006, 137(3): 1765-1772

[2]

PapageorgiouS K, KatsarosF K, KouvelosE P, KanellopoulosN K. Prediction of binary adsorption isotherms of Cu2+, Cd2+ and Pb2+ on calcium alginate beads from single adsorption data [J]. J Hazard Mater, 2009, 162(2/3): 1347-1354

[3]

PapageorgiouS K, KouvelosE P, KatsarosF K. Calcium alginate beads from Laminaria digitata for the removal of Cu2+ and Cd2+ from dilute aqueous metal solutions [J]. Desalination, 2008, 224(1/2/3): 293-306

[4]

DursunA Y. A comparative study on determination of equilibrium, kinetic and thermodynamic parameters of biosorption of copper(II) and lead(II) ions onto pretreated Aspergillus niger [J]. Biochem Eng J, 2006, 28(2): 187-195

[5]

AhluwaliaS S, GoyalD. Microbial and plant derived biomass for removal of heavy metals from wastewater [J]. Bioresour Technol, 2007, 98(12): 2243-2257

[6]

WangJ-s, HuX-j, LiuY-g, XieS-b, BaoZ-lei. Biosorption of uranium(VI) by immobilized Aspergillus fumigatus beads [J]. J Environ Radioact, 2010, 101(6): 504-508

[7]

MataY N, BlázquezM L, BallesterA, GonzáleaF, MuñozJ A. Biosorption of cadmium, lead and copper with calcium alginate xerogels and immobilized Fucus vesiculosus [J]. J Hazard Mater, 2009, 163(2/3): 555-562

[8]

SrivastavaV C, MallI D, MishraI M. Competitive adsorption of cadmium(II) and nickel(II) metal ions from aqueous solution onto rice husk ash [J]. Chem Eng Process, 2009, 48(1): 370-379

[9]

AksuZ, Açlkel, KabasakalE, TezerS. Equilibrium modeling of individual and simultaneous biosorption of chromium(VI) and nickel(II) onto dried activated sludge [J]. Water Res, 2002, 36(12): 3063-3073

[10]

LiL-j, LiuF-q, JingX-s, LingP-p, LiA-min. Displacement mechanism of binary competitive adsorption for aqueous divalent metal ions onto a novel IDA-chelating resin: Isotherm and kinetic modeling [J]. Water Res, 2011, 45(3): 1177-1188

[11]

ZhouL-c, LiY-f, BaiX, ZhaoG-hui. Use of microorganisms immobilized on composite polyurethane foam to remove Cu(II) from aqueous solution [J]. J Hazard Mater, 2009, 167(1/2/3): 1106-1113

[12]

PelitL, ErtaşF N, EroğluA E, ShahwanT, TuralH. Biosorption of Cu(II) and Pb(II) ions from aqueous solution by natural spider silk [J]. Bioresour Technol, 2011, 102(19): 8807-8813

[13]

IbrahimW M. Biosorption of heavy metal ions from aqueous solution by red macroalgae [J]. J Hazard Mater, 2011, 192(3): 1827-1835

[14]

HuX-j, WangJ-s, LiuY-g, LiX, ZengG-m, BaoZ-l, ZengX-x, ChenA-w, LongFei. Adsorption of chromium(VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics [J]. J Hazard Mater, 2011, 185(1): 306-314

[15]

WangJ-l, ChenCan. Biosorption of heavy metals by Saccharomyces cerevisiae: A review [J]. Biotechnol Adv, 2006, 24(5): 427-451

[16]

LiuY-h, CaoQ-l, LuoF, ChenJi. Biosorption of Cd2+, Cu2+, Ni2+ and Zn2+ ions from aqueous solutions by pretreated biomass of brown algae [J]. J Hazard Mater, 2009, 163(2/3): 931-938

[17]

ÇabukA, AkarT, TunaliS, GedikliS. Biosorption of Pb(II) by industrial strain of Saccharomyces cerevisiae immobilized on the biomatrix of cone biomass of Pinus nigra: Equilibrium and mechanism analysis [J]. Chem Eng J, 2007, 131(1/2/3): 293-300

[18]

MachidaM, AikawaM, TatsumotoH. Prediction of simultaneous adsorption of Cu(II) and Pb(II) onto activated carbon by conventional Langmuir type equations [J]. J Hazard Mater, 2005, 120(1/2/3): 271-275

[19]

SwayampakulaK, BodduV M, NadavalaS K, AbburiK. Competitive adsorption of Cu(II), Co(II) and Ni(II) from their binary and tertiary aqueous solutions using chitosan-coated perlite beads as biosorbent [J]. J Hazard Mater, 2009, 170(2/3): 680-689

[20]

LiY-h, XiaB, ZhaoQ-s, LiuF-q, ZhangP, DuQ-j, WangD-c, LiD, WangZ-h, XiaY-zhi. Removal of copper ions from aqueous solution by calcium alginate immobilized kaolin [J]. J Environ Sci, 2011, 23(3): 404-411

[21]

YahayaY A, DonM M, BhatiaS. Biosorption of copper(II) onto immobilized cells of Pycnoporus sanguineus from aqueous solution: Equilibrium and kinetic studies [J]. J Hazard Mater, 2009, 161(1): 189-195

[22]

FanT, LiuY-u, FengB-y, ZengG-m, YangC-p, ZhouM, ZhouH-z, TanZ-f, WangXin. Biosorption of cadmium(II), zinc(II) and lead(II) by Penicillium simplicissimum: Isotherms, kinetics and thermodynamics [J]. J Hazard Mater, 2008, 160(2/3): 655-661

[23]

BayramoğluG, BektaşS, AricaM Y. Biosorption of heavy metal ions on immobilized white-rot fungus Trametes versicolor [J]. J Hazard Mater, 2003, 101(3): 285-300

[24]

AnirudhanT S, SuchithraP S. Heavy metals uptake from aqueous solutions and industrial wastewaters by humic acid-immobilized polymer/bentonite composite: Kinetics and equilibrium modeling [J]. Chem Eng J, 2010, 156(1): 146-156

[25]

AricaM Y, KaçarY, Genç. Entrapment of white-fungus Trametes versicolor in Ca-alginate beads: Preparation and biosorption kinetic analysis for cadmium removal from an aqueous solution [J]. Bioresour Technol, 2001, 80(2): 121-129

[26]

LagergrenS. About the theory of so-called adsorption of soluble substances [J]. K Sven Vetenskapsakad Handl, 1898, 24(4): 1-39

[27]

HoY S, MckayG. Sorption of dye from aqueous solution by peat [J]. Chem Eng J, 1998, 70(2): 115-124

[28]

HoY S, MckayG. A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents [J]. Process Saf Environ Prot, 1998, 76(4): 332-340

[29]

HoY S, MckayG. Pseudo-second order model for sorption processes [J]. Process Biochem, 1999, 34(5): 451-465

[30]

HoY S, MckayG. The kinetics of sorption of divalent metal ions onto sphagnum moss flat [J]. Water Res, 2000, 34: 735-742

[31]

PengQ-q, LiuY-g, ZengG-m, XuW-h, YangC-p, ZhangJ-jin. Biosorption of copper(II) by immobilizing Saccharomyces cerevisiae on the surface of chitosan-coated magnetic nanoparticles from aqueous solution [J]. J Hazard Mater, 2010, 177(1/2/3): 676-682

[32]

FooK Y, HameedB H. Insights into the modeling of adsorption isotherm systems [J]. Chem Eng J, 2010, 156(1): 2-10

[33]

FebriantoJ, KosasihA N, SunarsoJ, JuY H, IndraswatiN, IsmadjiS. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies [J]. J Hazard Mater, 2009, 162(2/3): 616-645

[34]

YuanX-z, JiangL-l, ZengG-m, LiuZ-f, ZhongH, HuangH-j, ZhouM-f, CuiK-long. Effect of rhamnolipids on cadmium adsorption by Penicillium simplicissimum [J]. J Cent South Univ, 2012, 19(4): 1073-1080

[35]

PearsonR G. Hard soft acids bases [J]. J Am Chem Soc, 1963, 85(22): 3533-3539

[36]

LunaA S, CostaA L H, CostaD A C A, HenriquesC A. Competitive biosorption of cadmium(II) and zinc(II) ions from binary systems by Sargassum filipendula [J]. Bioresour Technol, 2010, 101(4): 5104-5111

[37]

ApiratikulR, PavasantP. Sorption isotherm model for binary component sorption of copper, cadmium, and lead ions using dried green macroalga, Caulerpa lentillifera [J]. Chem Eng J, 2006, 119(2/3): 135-145

[38]

SheindorfC, RebhunM, SheintuchM. A Freundlich-type multicomponent isotherm [J]. J Colloid Interface Sci, 1981, 79(1): 136-142

[39]

PagnanelliF, EspositoA, VegliòF. Multi-metallic modelling for biosorption of binary systems [J]. Water Res, 2002, 36(16): 4095-4105

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/